Transgenic Research

, Volume 22, Issue 3, pp 607–619 | Cite as

Cre-mediated targeted gene activation in the middle silk glands of transgenic silkworms (Bombyx mori)

  • Jianping Duan
  • Hanfu Xu
  • Sanyuan Ma
  • Huizhen Guo
  • Feng Wang
  • Ping Zhao
  • Qingyou Xia
Original Paper


Cre-mediated recombination is widely used to manipulate defined genes spatiotemporally in vivo. The present study evaluated the Cre/loxP system in Bombyx mori by establishing two transgenic lines. One line contained a Cre recombinase gene controlled by a sericin-1 gene (Ser1) promoter. The other line contained a loxP-Stop-loxP-DsRed cassette driven by the same Ser1 promoter. The precise deletion of the Stop fragment was found to be triggered by Cre-mediated site-specific excision, and led to the expression of DsRed fluorescence protein in the middle silk glands of all double-transgenic hybrids. This result was also confirmed by phenotypical analysis. Hence, the current study demonstrated the feasibility of Cre-mediated site-specific recombination in B. mori, and opened a new window for further refining genetic tools in silkworms.


Cre/loxP Site-specific excision Stop fragment Targeted gene activation B. mori 



Sericin-1 gene


Flanked by two loxP sites


DsRed fluorescence protein


SV40 polyadenylation signal


Anterior subpart of middle silk gland


Middle subpart of middle silk gland


Posterior subpart of middle silk gland


Middle silk gland


Posterior silk gland


  1. Albert H, Dale EC, Lee E, Ow DW (1995) Site-specific integration of DNA into wild-type and mutant lox sites placed in the plant genome. Plant J 7(4):649–659PubMedCrossRefGoogle Scholar
  2. Branda CS, Dymecki SM (2004) Talking about a revolution: the impact of site-specific recombinases on genetic analyses in mice. Dev Cell 6(1):7–28. doi:S153458070300399X Google Scholar
  3. Buchholz F, Ringrose L, Angrand PO, Rossi F, Stewart AF (1996) Different thermostabilities of FLP and Cre recombinases: implications for applied site-specific recombination. Nucleic Acids Res 24(21):4256–4262. doi:10.1093/nar/24.21.4256 PubMedCrossRefGoogle Scholar
  4. Gage LP (1974) Polyploidization of the silk gland of Bombyx mori. J Mol Biol 86(1):97–108PubMedCrossRefGoogle Scholar
  5. Garrick D, Fiering S, Martin DI, Whitelaw E (1998) Repeat-induced gene silencing in mammals. Nat Genet 18(1):56–59. doi:10.1038/ng0198-56 PubMedCrossRefGoogle Scholar
  6. Golic KG, Golic MM (1996) Engineering the Drosophila genome: chromosome rearrangements by design. Genetics 144(4):1693–1711PubMedGoogle Scholar
  7. Gong WJ, Golic KG (2003) Ends-out, or replacement, gene targeting in Drosophila. Proc Natl Acad Sci USA 100(5):2556–2561. doi:10.1073/pnas.0535280100 PubMedCrossRefGoogle Scholar
  8. Gu H, Marth JD, Orban PC, Mossmann H, Rajewsky K (1994) Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science 265(5168):103–106PubMedCrossRefGoogle Scholar
  9. Herault Y, Rassoulzadegan M, Cuzin F, Duboule D (1998) Engineering chromosomes in mice through targeted meiotic recombination (TAMERE). Nat Genet 20(4):381–384. doi:10.1038/3861 PubMedCrossRefGoogle Scholar
  10. Herrera PL (2000) Adult insulin- and glucagon-producing cells differentiate from two independent cell lineages. Development 127(11):2317–2322PubMedGoogle Scholar
  11. Hoa TT, Bong BB, Huq E, Hodges TK (2002) Cre/lox site-specific recombination controls the excision of a transgene from the rice genome. Theor Appl Genet 104(4):518–525. doi:10.1007/s001220100748 PubMedCrossRefGoogle Scholar
  12. Horn C, Wimmer EA (2000) A versatile vector set for animal transgenesis. Dev Genes Evol 210(12):630–637PubMedCrossRefGoogle Scholar
  13. Imamura M, Nakai J, Inoue S, Quan GX, Kanda T, Tamura T (2003) Targeted gene expression using the GAL4/UAS system in the silkworm Bombyx mori. Genetics 165(3):1329–1340PubMedGoogle Scholar
  14. Indra AK, Warot X, Brocard J, Bornert JM, Xiao JH, Chambon P, Metzger D (1999) Temporally-controlled site-specific mutagenesis in the basal layer of the epidermis: comparison of the recombinase activity of the tamoxifen-inducible Cre-ER(T) and Cre-ER(T2) recombinases. Nucleic Acids Res 27(22):4324–4327. doi:10.1093/nar/27.22.4324 PubMedCrossRefGoogle Scholar
  15. Isobe R, Kojima K, Matsuyama T, Quan GX, Kanda T, Tamura T, Sahara K, Asano SI, Bando H (2004) Use of RNAi technology to confer enhanced resistance to BmNPV on transgenic silkworms. Arch Virol 149(10):1931–1940PubMedGoogle Scholar
  16. Kozak M (1991) Structural features in eukaryotic mRNAs that modulate the initiation of translation. J Biol Chem 266(30):19867–19870PubMedGoogle Scholar
  17. Lakso M, Sauer B, Mosinger B Jr, Lee EJ, Manning RW, Yu SH, Mulder KL, Westphal H (1992) Targeted oncogene activation by site-specific recombination in transgenic mice. Proc Natl Acad Sci USA 89(14):6232–6236PubMedCrossRefGoogle Scholar
  18. Lam KP, Rajewsky K (1998) Rapid elimination of mature autoreactive B cells demonstrated by Cre-induced change in B cell antigen receptor specificity in vivo. Proc Natl Acad Sci USA 95(22):13171–13175PubMedCrossRefGoogle Scholar
  19. Liu Y, Yu L, Guo X, Guo T, Wang S, Lu C (2006) Analysis of tissue-specific region in sericin 1 gene promoter of Bombyx mori. Biochem Biophys Res Commun 342(1):273–279. doi:S0006-291X(06)00236-1 Google Scholar
  20. Matsuno K, Hui CC, Takiya S, Suzuki T, Ueno K, Suzuki Y (1989) Transcription signals and protein binding sites for sericin gene transcription in vitro. J Biol Chem 264(31):18707–18713PubMedGoogle Scholar
  21. Nagy A, Moens C, Ivanyi E, Pawling J, Gertsenstein M, Hadjantonakis AK, Pirity M, Rossant J (1998) Dissecting the role of N-myc in development using a single targeting vector to generate a series of alleles. Curr Biol 8(11):661–664. doi:S0960-9822(98)70254-4 Google Scholar
  22. Nakayama G, Kawaguchi Y, Koga K, Kusakabe T (2006) Site-specific gene integration in cultured silkworm cells mediated by φC31 integrase. Mol Genet Genomics 275(1):1–8. doi:10.1007/s00438-005-0026-3 PubMedCrossRefGoogle Scholar
  23. O’Gorman S, Fox DT, Wahl GM (1991) Recombinase-mediated gene activation and site-specific integration in mammalian cells. Science 251(4999):1351–1355PubMedCrossRefGoogle Scholar
  24. Perdrix-Gillot S (1979) DNA synthesis and endomitoses in the giant nuclei of the silkgland of Bombyx mori. Biochimie 61(2):171–204PubMedCrossRefGoogle Scholar
  25. Quan GX, Kanda T, Tamura T (2002) Induction of the white egg 3 mutant phenotype by injection of the double-stranded RNA of the silkworm white gene. Insect Mol Biol 11(3):217–222. doi:10.1046/j.13652583.2002.00328.x PubMedCrossRefGoogle Scholar
  26. Rong YS, Golic KG (2001) A targeted gene knockout in Drosophila. Genetics 157(3):1307–1312PubMedGoogle Scholar
  27. Sauer B (1987) Functional expression of the cre-lox site-specific recombination system in the yeast Saccharomyces cerevisiae. Mol Cell Biol 7(6):2087–2096PubMedGoogle Scholar
  28. Suzuki MG, Funaguma S, Kanda T, Tamura T, Shimada T (2003) Analysis of the biological functions of a doublesex homologue in Bombyx mori. Dev Genes Evol 213(7):345–354. doi:10.1007/s00427-003-0334-8 PubMedCrossRefGoogle Scholar
  29. Tabunoki H, Higurashi S, Ninagi O, Fujii H, Banno Y, Nozaki M, Kitajima M, Miura N, Atsumi S, Tsuchida K, Maekawa H, Sato R (2004) A carotenoid-binding protein (CBP) plays a crucial role in cocoon pigmentation of silkworm (Bombyx mori) larvae. FEBS Lett 567(2–3):175–178. doi:10.1016/j.febslet.2004.04.067 PubMedCrossRefGoogle Scholar
  30. Takasu Y, Hata T, Uchino K, Zhang Q (2010) Identification of Ser2 proteins as major sericin components in the non-cocoon silk of Bombyx mori. Insect Biochem Mol Biol 40(4):339–344. doi:S0965-1748(10)00039-1
  31. Tamura T, Thibert C, Royer C, Kanda T, Abraham E, Kamba M, Komoto N, Thomas JL, Mauchamp B, Chavancy G, Shirk P, Fraser M, Prudhomme JC, Couble P (2000) Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector. Nat Biotechnol 18(1):81–84. doi:10.1038/71978 PubMedCrossRefGoogle Scholar
  32. Tan A, Tanaka H, Tamura T, Shiotsuki T (2005) Precocious metamorphosis in transgenic silkworms overexpressing juvenile hormone esterase. Proc Natl Acad Sci USA 102(33):11751–11756. doi:10.1073/pnas.0500954102 Google Scholar
  33. Tanimoto K, Liu Q, Bungert J, Engel JD (1999) Effects of altered gene order or orientation of the locus control region on human beta-globin gene expression in mice. Nature 398(6725):344–348. doi:10.1038/18698 PubMedCrossRefGoogle Scholar
  34. Tatematsu K, Kobayashi I, Uchino K, Sezutsu H, Iizuka T, Yonemura N, Tamura T (2010) Construction of a binary transgenic gene expression system for recombinant protein production in the middle silk gland of the silkworm Bombyx mori. Transgenic Res 19(3):473–487. doi:10.1007/s11248-009-9328-2 PubMedCrossRefGoogle Scholar
  35. Tateno M, Toyooka M, Shikano Y, Takeda S, Kuwabara N, Sezutsu H, Tamura T (2009) Production and characterization of the recombinant human μ-opioid receptor from transgenic silkworms. J Biochem 145(1):37–42. doi:10.1093/jb/mvn147 PubMedCrossRefGoogle Scholar
  36. Thummel R, Burket CT, Brewer JL, Sarras MP Jr, Li L, Perry M, McDermott JP, Sauer B, Hyde DR, Godwin AR (2005) Cre-mediated site-specific recombination in zebrafish embryos. Dev Dyn 233(4):1366–1377. doi:10.1002/dvdy.20475 PubMedCrossRefGoogle Scholar
  37. Tomita S, Kanda T, Imanishi S, Tamura T (1999) Yeast FLP recombinase-mediated excision in cultured cells and embryos of the silkworm, Bombyx mori (Lepidoptera: Bombycidae). Appl Entomol Zool 34(3):371–377Google Scholar
  38. Tsien JZ, Chen DF, Gerber D, Tom C, Mercer EH, Anderson DJ, Mayford M, Kandel ER, Tonegawa S (1996) Subregion- and cell type-restricted gene knockout in mouse brain. Cell 87(7):1317–1326. doi:S0092-8674(00)81826-7 Google Scholar
  39. Utomo AR, Nikitin AY, Lee WH (1999) Temporal, spatial, and cell type-specific control of Cre-mediated DNA recombination in transgenic mice. Nat Biotechnol 17(11):1091–1096. doi:10.1038/15073 PubMedCrossRefGoogle Scholar
  40. Vergunst AC, Jansen LE, Fransz PF, de Jong JH, Hooykaas PJ (2000) Cre/lox-mediated recombination in Arabidopsis: evidence for transmission of a translocation and a deletion event. Chromosoma 109(4):287–297PubMedCrossRefGoogle Scholar
  41. Xie HB, Golic KG (2004) Gene deletions by ends-in targeting in Drosophila melanogaster. Genetics 168(3):1477–1489. doi:10.1534/genetics.104.030882 PubMedCrossRefGoogle Scholar
  42. Zhao A, Zhao T, Zhang Y, Xia Q, Lu C, Zhou Z, Xiang Z, Nakagaki M (2009) New and highly efficient expression systems for expressing selectively foreign protein in the silk glands of transgenic silkworm. Transgenic Res 19(1):29–44. doi:10.1007/s11248-009-9295-7 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Jianping Duan
    • 1
  • Hanfu Xu
    • 1
  • Sanyuan Ma
    • 1
  • Huizhen Guo
    • 1
  • Feng Wang
    • 1
  • Ping Zhao
    • 1
  • Qingyou Xia
    • 1
  1. 1.State Key Laboratory of Silkworm Genome BiologySouthwest UniversityChongqingChina

Personalised recommendations