Transgenic Research

, Volume 22, Issue 2, pp 269–299

Resistance evolution to the first generation of genetically modified Diabrotica-active Bt-maize events by western corn rootworm: management and monitoring considerations

  • Yann Devos
  • Lisa N. Meihls
  • József Kiss
  • Bruce E. Hibbard
Review

Abstract

Western corn rootworm (Diabrotica virgifera virgifera; WCR) is a major coleopteran maize pest in North America and the EU, and has traditionally been managed through crop rotation and broad-spectrum soil insecticides. Genetically modified Bt-maize offers an additional management tool for WCR and has been valuable in reducing insecticide use and increasing farm income. A concern is that the widespread, repeated, and exclusive deployment of the same Bt-maize transformation event will result in the rapid evolution of resistance in WCR. This publication explores the potential of WCR to evolve resistance to plant-produced Bt-toxins from the first generation of Diabrotica-active Bt-maize events (MON 863 and MON 88017, DAS-59122-7 and MIR604), and whether currently implemented risk management strategies to delay and monitor resistance evolution are appropriate. In twelve of the twelve artificial selection experiments reported, resistant WCR populations were yielded rapidly. Field-selected resistance of WCR to Cry3Bb1 is documented in some US maize growing areas, where an increasing number of cases of unexpected damage of WCR larvae to Bt-maize MON 88017 has been reported. Currently implemented insect resistance management measures for Bt-crops usually rely on the high dose/refuge (HDR) strategy. Evidence (including laboratory, greenhouse and field data) indicates that several conditions contributing to the success of the HDR strategy may not be met for the first generation of Bt-maize events and WCR: (1) the Bt-toxins are expressed heterogeneously at a low-to-moderate dose in roots; (2) resistance alleles may be present at a higher frequency than initially assumed; (3) WCR may mate in a non-random manner; (4) resistance traits could have non-recessive inheritance; and (5) fitness costs may not necessarily be associated with resistance evolution. However, caution must be exercised when extrapolating laboratory and greenhouse results to field conditions. Model predictions suggest that a 20 % refuge of non-Diabrotica-active Bt-maize can delay resistance evolution in WCR under certain conditions. This publication concludes that further research is needed to resolve the remaining scientific uncertainty related to the appropriateness of the HDR in delaying resistance evolution in WCR, resistance monitoring is essential to detect early warning signs indicating resistance evolution in the field, and that integrated pest management reliant on multiple tactics should be deployed to ensure effective long-term corn rootworm management and sustainable use of Bt-maize.

Keywords

Bt-toxins Compliance Genetically modified maize Resistance evolution Resistance management Resistance monitoring Seed blends Western corn rootworm 

References

  1. Alcalde E, Amijee F, Blache G, Bremer C, Fernandez S, Garcia-Alonso M, Holt K, Legris G, Novillo C, Schlotter P, Storer N, Tinland B (2007) Insect resistance monitoring for Bt maize cultivation in the EU: proposal from the industry IRM working group. J Consum Prot Food Saf 2(S1):47–49Google Scholar
  2. Alstad DA, Andow DA (1995) Managing the evolution of insect resistance to transgenic plants. Science 268:1894–1896PubMedCrossRefGoogle Scholar
  3. Andow DA (2008) The risk of resistance evolution in insects to transgenic insecticidal crops. Collect Biosaf Rev 4:142–199Google Scholar
  4. Andow DA, Alstad DA (1998) F2 screen for rare resistance alleles. J Econ Entomol 91:572–578Google Scholar
  5. Andow DA, Alstad DN (1999) Credibility interval for rare resistance allele frequencies. J Econ Entomol 94:755–758Google Scholar
  6. Andow DA, Ives AR (2002) Monitoring and adaptive resistance management. Ecol Appl 12:1378–1390CrossRefGoogle Scholar
  7. Andow DA, Farrell SL, Hu Y (2010) Planting patterns of in-field refuges observed for Bt maize in Minnesota. J Econ Entomol 103:1394–1399PubMedCrossRefGoogle Scholar
  8. Aragón P, Lobo JM (2012) Predicted effect of climate change on the invasibility and distribution of the western corn rootworm. Agric For Entomol 14:13–18CrossRefGoogle Scholar
  9. Areal FJ, Riesgo L, Rodríguez-Cerezo E (2012) Economic and agronomic impact of commercialized GM crops: a meta-analysis. J Agric Sci. doi:10.1017/S0021859612000111 Google Scholar
  10. Bagley M, Oswald K, French BW, Nielson CN (2009) Fitness of Bt-resistant western corn rootworm on Mon863 and isoline corn. IWGO meeting, Munich, Germany, April 5–8, 2009Google Scholar
  11. Ball HJ, Weekman GT (1962) Insecticide resistance in the western corn rootworm in Nebraska. J Econ Entomol 55:439–441Google Scholar
  12. Bates SL, Zhao J-Z, Roush RT, Shelton AM (2005) Insect resistance management in GM crops: past, present and future. Nat Biotechnol 25:57–62CrossRefGoogle Scholar
  13. Baum JA, Bogaert T, Clinton W, Heck GR, Feldmann P, Ilagan O, Johnson S, Plaetinck G, Munyikwa T, Pleau M, Vaughn T, Roberts J (2007) Control of coleopteran insect pests through RNA interference. Nat Biotechnol 25:1322–1326PubMedCrossRefGoogle Scholar
  14. Bernklau EJ, Hibbard BE, Bjostad LB (2010) Antixenosis in maize reduces feeding by western corn rootworm larvae (Coleoptera: Chrysomelidae). J Econ Entomol 103:2052–2060PubMedCrossRefGoogle Scholar
  15. Binning RR, Lefko SA, Millsap AY, Thompson SD, Nowatzki TM (2010) Estimating western corn rootworm (Coleoptera: Chrysomelidae) larval susceptibility to event DAS-59122-7 maize. J Appl Entomol 134:551–561Google Scholar
  16. Blanco CA, Storer NP, Abel CA, Jackson R, Leonard R, Lopez JD, Payne G, Siegfried BD, Spencer T, Terán-Vargas AP (2008) Baseline susceptibility of tobacco budworm (Lepidoptera: Noctuidae) to Cry1F toxin from Bacillus thuringiensis. J Econ Entomol 101:168–173PubMedCrossRefGoogle Scholar
  17. Boriani M, Agosti M, Kiss J, Edwards CR (2006) Sustainable management of the western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), in infested areas: experiences in Italy, Hungary and the USA. EPPO Bull 36:531–537CrossRefGoogle Scholar
  18. Bourguet D, Desquilbet M, Lemarié S (2005) Regulating insect resistance management: the case of non-Bt corn refuges in the US. J Environ Manag 76:210–220CrossRefGoogle Scholar
  19. Bravo A, Soberón M (2008) How to cope with insect resistance to Bt toxins? Trends Biotechnol 26:573–579PubMedCrossRefGoogle Scholar
  20. Bravo A, Gómez I, Porta H, García-Gómez BI, Rodriguez-Almazan C, Pardo L, Soberón M (2012) Evolution of Bacillus thuringiensis Cry toxins insecticidal activity. Microbial Biotechnol. doi:10.1111/j.1751-7915-2012.00342.x Google Scholar
  21. Breitenbach S, Heimbach U, Lauer KF (2005) Field tests on the host range of the larvae of the western corn rootworm (Diabrotica virgifera virgifera LeConte 1868, Chrysomelidae, Coleoptera). Nachrichtenbl Deut Pflanzenschutzd 57:241–244Google Scholar
  22. Burand JP, Hunter WB (2012) RNAi: future in insect management. J Invertebr Pathol. doi:10.1016/j.jip.2012/07.012 PubMedGoogle Scholar
  23. Caprio MA, Tabashnik BE (1992) Gene flow accelerates local adaptation among finite populations: simulating the evolution of insecticide resistance. J Econ Entomol 85:611–620Google Scholar
  24. Carpenter JE (2010) Peer-reviewed surveys indicate positive impact of commercialized crops. Nat Biotechnol 28:319–321PubMedCrossRefGoogle Scholar
  25. Carrasco LR, Harwood TD, Toepfer S, MacLeod A, Levay N, Kiss J, Baker RHA, Mumford JD, Knight JD (2009) Dispersal kernels of the invasive alien western corn rootworm and the effectiveness of buffer zones in eradication programmes in Europe. Ann Appl Biol 156:63–77CrossRefGoogle Scholar
  26. Carrière Y, Tabashnik BE (2001) Reversing insect adaptation to transgenic insecticidal plants. Proc R Soc B Biol Sci 268:1475–1480CrossRefGoogle Scholar
  27. Carrière Y, Crowder DW, Tabashnik BE (2010) Evolutionary ecology of insect adaptation to Bt crops. Evol Appl 3:561–573CrossRefGoogle Scholar
  28. Carrière Y, Ellers-Kirk C, Harthfield K, Larocque G, Degain B, Dutilleul P, Dennehy TJ, Marsh SE, Crowder DW, Li X, Ellsworth PC, Naranjo SE, Palumbo JC, Fournier A, Antilla L, Tabashnik BE (2012) Large-scale, spatially explicit test of the refuge strategy for delaying insecticide resistance. Proc Natl Acad Sci USA 109:775–780PubMedCrossRefGoogle Scholar
  29. CERA (2011) Problem formulation for the environmental risk assessment of RNAi plants: conference proceedings. http://cera-gmc.org/docs/cera_publications/pub_08_2011.pdf
  30. Chege PG, Clark TL, Hibbard BE (2005) Alternate host phenology affects survivorship, growth and development of western corn rootworm (Coleoptera: Chrysomelidae) larval biology. Environ Entomol 34:1441–1447CrossRefGoogle Scholar
  31. Chege PG, Clark TL, Hibbard BE (2009) Initial larval feeding on an alternate host enhances western corn rootworm (Coleoptera: Chrysomelidae) beetle emergence on Cry3Bb1-expressing maize. J Kansas Entomol Soc 82:63–75CrossRefGoogle Scholar
  32. Ciosi M, Miller NJ, Kim KS, Giordano R, Estoup A, Guillemaud T (2008) Invasion of Europe by the western corn rootworm, Diabrotica virgifera virgifera: multiple transatlantic introductions with various reductions of genetic diversity. Mol Ecol 17:3614–3627PubMedCrossRefGoogle Scholar
  33. Ciosi M, Miller NJ, Toepfer S, Estoup A, Guillemaud T (2011) Stratified dispersal and increasing genetic variation during the invasion of Central Europe by the western corn rootworm, Diabrotica virgifera virgifera. Evol Appl 4:54–70CrossRefGoogle Scholar
  34. Clark TL, Hibbard BE (2004) Comparison of nonmaize hosts to support western corn rootworm (Coleoptera: Chrysomelidae) larval biology. Environ Entomol 33:681–689CrossRefGoogle Scholar
  35. Clark PL, Vaughn TT, Meinke LJ, Molina-Ochoa J, Foster JE (2006) Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae) larval feeding behavior on transgenic maize (MON 863) and its isoline. J Econ Entomol 99:722–727PubMedCrossRefGoogle Scholar
  36. Clark TL, Frank DL, French BW, Meinke LJ, Moellenbeck D, Vaughn TT, Hibbard BE (2012) Mortality impact of MON863 transgenic maize roots on western corn rootworm larvae in the field. J Appl Entomol. doi:10.1111/j.1439-0418.2012.01709.x Google Scholar
  37. Coats SA, Tollefson JJ, Mutchmor JA (1986) Study of migratory flight in the western corn rootworm. Environ Entomol 15:1–6Google Scholar
  38. Coats SA, Mutchmor JA, Tollefson JJ (1987) Regulation of migratory flight by juvenile hormone mimic and inhibitor in the western corn rootworm (Coleoptera: Chrysomelidae). Ann Entomol Soc Am 80:697–708Google Scholar
  39. Crickmore N, Zeigler DR, Schnepf E, Van Rie J, Lereclus D, Baum J, Bravo A, Dean DH (2012) Bacillus thuringiensis toxin nomenclature. http://www.lifesci.sussex.ac.uk/home/Neil_Crickmore/Bt/
  40. Crowder DW, Carrière Y (2009) Comparing the refuge strategy for managing the evolution of insect resistance under different reproductive strategies. J Theor Biol 261:423–430PubMedCrossRefGoogle Scholar
  41. Crowder DW, Onstad DW (2005) Using a generational time-step model to simulate the dynamics of adaptation to transgenic corn and crop rotation by western corn rootworm (Coleoptera: Chrysomelidae). J Econ Entomol 98:518–533PubMedCrossRefGoogle Scholar
  42. Crowder DW, Onstad DW, Gray ME, Pierce CMF, Hagar AG, Ratcliffe ST, Steffey KL (2005) Analysis of the dynamics of adaptation to transgenic corn and crop rotation by western corn rootworm (Coleoptera: Chrysomelidae) using a daily time-step model. J Econ Entomol 98:534–551PubMedCrossRefGoogle Scholar
  43. Crowder DW, Onstad DW, Gray ME (2006) Planting transgenic insecticidal corn based on economic thresholds: consequences for integrated pest management and insect resistance management. J Econ Entomol 99:899–907PubMedCrossRefGoogle Scholar
  44. Devos Y, De Schrijver A, De Clercq P, Kiss J, Romeis J (2012) Bt-maize event MON 88017 expressing Cry3Bb1 does not cause harm to non-target organisms. Transgenic Res. doi:10.1007/s11248-012-9617-z Google Scholar
  45. Dun Z, Mitchell PD, Agosti M (2010) Estimating Diabrotica virgifera virgifera damage functions with field trial data: applying an unbalanced nested error component. J Appl Entomol 134:409–419CrossRefGoogle Scholar
  46. EC (2012) Survey results for the presence of Diabrotica virgifera Le Conte in the European Union in 2011. Report from the Health and Consumers Directorate-General of the European Commission [Reference: Ares (2012) 564532—08/05/2012]Google Scholar
  47. EFSA (2011a) Guidance on the post-market environmental monitoring (PMEM) of genetically modified plants. EFSA J 2316:1–40. http://www.efsa.europa.eu/en/efsajournal/doc/2316.pdf Google Scholar
  48. EFSA (2011b) Scientific opinion on the annual post-market environmental monitoring (PMEM) report from Monsanto Europe SA on the cultivation of genetically modified maize MON810 in 2009. EFSA J 2376:1–66. http://www.efsa.europa.eu/en/efsajournal/doc/2376.pdf
  49. EFSA (2011c) Scientific opinion on application (EFSA-GMO-CZ-2008-54) for placing on the market of genetically modified insect resistant and herbicide tolerant maize MON 88017 for cultivation under regulation (EC) no. 1829/2003 from Monsanto. EFSA J 2428:1–152. http://www.efsa.europa.eu/en/efsajournal/doc/2428.pdf
  50. EFSA (2012) Scientific opinion on the annual post-market environmental monitoring (PMEM) report from Monsanto Europe SA on the cultivation of genetically modified maize MON810 in 2010. EFSA J 2610:1–35. http://www.efsa.europa.eu/en/efsajournal/doc/2610.pdf
  51. El Khishen AA, Bohn MO, Prischmann-Voldseth DA, Dashiell KE, French BW, Hibbard BE (2009) Native resistance to western corn rootworm (Coleoptera: Chrysomelidae) larval feeding: characterisation and mechanisms. J Econ Entomol 102:2350–2359CrossRefGoogle Scholar
  52. Farinós GP, de la Poza M, Hernández-Crespo P, Ortego F, Castañera P (2004) Resistance monitoring of field populations of the corn borers Sesamia nonagrioides and Ostrinia nubilalis after 5 years of Bt maize cultivation in Spain. Entomol Exp Appl 110:23–30CrossRefGoogle Scholar
  53. Farinós GP, Andreadis SS, de la Poza M, Mironidis GK, Ortego F, Savopoulou-Soultani M, Castañera P (2011) Comparative assessment of the field-susceptibility of Sesamia nonagrioides to the Cry1Ab toxin in areas with different adoption rates of Bt maize and in Bt-free areas. Crop Prot 30:902–906CrossRefGoogle Scholar
  54. Farinós GP, de la Poza M, Ortego F, Castañera P (2012) Susceptibility to the Cry1F toxin of field populations of Sesamia nonagrioides (Lepidoptera: Noctuidae) in mediterranean maize cultivation regions. J Econ Entomol 105:214–221PubMedCrossRefGoogle Scholar
  55. FCEC (2009) Analysis of the economic, social and environmental impacts of options for the long-term EU strategy against Diabrotica virgifera virgifera (western corn rootworm), a regulated harmful organism of maize. http://ec.europa.eu/food/plant/organisms/emergency/final_report_Diabrotica_study.pdf
  56. French BW, Bagley M, Nielson CN, Oswald K (2008) Fitness costs related to selection for resistance to the Cry3Bb1 protein in a genetically diverse population of non-diapausing western corn rootworm. In: Entomological Society of America annual meeting, Reno, NV, USA, November 16–19, 2008Google Scholar
  57. Gaspers C, Siegfried BD, Spencer T, Alves AP, Storer NP, Schuphan I, Eber S (2011) Susceptibility of European and North American populations of the European corn borer to the Cry1F insecticidal protein. J Appl Entomol 135:7–16CrossRefGoogle Scholar
  58. Gassmann AJ (2012) Field-evolved resistance to Bt maize by western corn rootworm: predictions from the laboratory and effects in the field. J Invertebr Pathol 110:287–293PubMedCrossRefGoogle Scholar
  59. Gassmann AJ, Hutchison WD (2012) Bt crops and insect pests: past successes, future challenges and opportunities. GM Crops Food Biotechnol Agric Food Chain 3:139CrossRefGoogle Scholar
  60. Gassmann AJ, Carrière Y, Tabashnik BE (2009) Fitness costs of insect resistance to Bacillus thuringiensis. Ann Rev Entomol 54:147–163CrossRefGoogle Scholar
  61. Gassmann AJ, Petzold-Maxwell JL, Keweshan RS, Dunbar MW (2011) Field-evolved resistance to Bt maize by western corn rootworm. PLoS One 6:e22629PubMedCrossRefGoogle Scholar
  62. Gassmann AJ, Petzold-Maxwell JL, Keweshan RS, Dunbar MW (2012) Western corn rootworm and Bt maize: challenges of pest resistance in the field. GM Crops Food Biotechnol Agric Food Chain 3:235–244CrossRefGoogle Scholar
  63. Glaser JA, Matten SR (2003) Sustainability of insect resistance management strategies for transgenic Bt corn. Biotechnol Adv 22:45–69PubMedCrossRefGoogle Scholar
  64. Glaum PR, Ives AR, Andow DA (2012) Contamination and management of resistance evolution to high-dose transgenic insecticidal crops. Theor Ecol 5:195–209CrossRefGoogle Scholar
  65. Goldstein JA, Mason CE, Pesek J (2010) Dispersal and movement behavior of neonate European corn borer (Lepidoptera: Crambidae) on non-Bt and transgenic Bt corn. J Econ Entomol 103:331–339PubMedCrossRefGoogle Scholar
  66. Gould F (1998) Sustainability of transgenic insecticidal cultivars: integrating pest genetics and ecology. Ann Rev Entomol 43:701–726CrossRefGoogle Scholar
  67. Gould F (2003) Bt-resistance management—theory meets data. Nat Biotechnol 21:1450–1451PubMedCrossRefGoogle Scholar
  68. Gould F, Cohen MB, Bentur JS, Kennedy GG, Van Duyn J (2006) Impact of small fitness costs on pest adaptation to crop varieties with multiple toxins: a heuristic model. J Econ Entomol 99:2091–2099PubMedCrossRefGoogle Scholar
  69. Gray ME (2011a) Severe root damage to Bt corn observed in northwestern Illinois. Bull 20. http://bulletin.ipm.illinois.edu/article.php?id=1555
  70. Gray ME (2011b) Additional reports of severe rootworm damage to Bt corn received: questions and answers. Bull 22. http://bulletin.ipm.illinois.edu/article.php?id=1569
  71. Gray ME (2011c) Corn rootworm damage to Bt corn: should we expect more reports next year? Bull 24. http://bulletin.ipm.illinois.edu/article.php?id=1584
  72. Gray ME, Steffey KL, Estes RE, Schroeder JB (2007) Responses of transgenic maize hybrids to variant western corn rootworm larval injury. J Appl Entomol 131:386–390CrossRefGoogle Scholar
  73. Gray ME, Sappington TW, Miller NJ, Moeser J, Bohn MO (2009) Adaptation and invasiveness of western corn rootworm: intensifying research on a worsening pest. Ann Rev Entomol 54:303–321CrossRefGoogle Scholar
  74. Hammack L, Ellsbury MM, Roehrdanz RL, Pikul JL Jr (2003) Larval sampling and instar determination in field populations of northern and western corn rootworm (Coleoptera: Chrysomelidae). J Econ Entomol 96:1153–1159PubMedCrossRefGoogle Scholar
  75. Head GP, Greenplate J (2012) The design and implementation of insect resistance management programs for Bt crops. GM Crops Food Biotechnol Agric Food Chain 3:144–153CrossRefGoogle Scholar
  76. Hemerik L, Busstra C, Mols P (2004) Predicting the temperature-dependent natural population expansion of the western corn rootworm, Diabrotica virgifera. Entomol Exp Appl 111:59–69CrossRefGoogle Scholar
  77. Hibbard BE, Duran PN, Ellersieck MR, Ellsbury MM (2003) Post-establishment movement of western corn rootworm larvae (Coleoptera: Chrysomelidae) in central Missouri corn. J Econ Entomol 96:599–608PubMedCrossRefGoogle Scholar
  78. Hibbard BE, Higdon ML, Duran DP, Schweikert YM, Ellersieck MR (2004) Role of egg density on establishment and plant-to-plant movement by western corn rootworm larvae (Coleoptera: Chrysomelidae). J Econ Entomol 97:871–882PubMedCrossRefGoogle Scholar
  79. Hibbard BE, Vaughn TT, Oyediran IO, Clark TL, Ellersieck MR (2005) Effect of Cry3Bb1-expressing transgenic corn on plant-to-plant movement by western corn rootworm larvae (Coleoptera: Chrysomelidae). J Econ Entomol 98:1126–1138PubMedCrossRefGoogle Scholar
  80. Hibbard BE, El Khishen AA, Vaughn TT (2009) Impact of MON863 transgenic roots is equivalent on western corn rootworm larvae for a wide range of maize phenologies. J Econ Entomol 102:1607–1613PubMedCrossRefGoogle Scholar
  81. Hibbard BE, Meihls LN, Ellersieck MR, Onstad DW (2010a) Density-dependent and density-independent mortality of the western corn rootworm: impact on dose calculation of the rootworm-resistant Bt corn. J Econ Entomol 103:77–84PubMedCrossRefGoogle Scholar
  82. Hibbard BE, Clark TL, Ellersieck MR, Meihls LN, El Khishen AA, Kaster V, Steiner H-Y, Kurtz R (2010b) Mortality of western corn rootworm larvae on MIR604 transgenic maize roots: field survivorship has no significant impact on survivorship of F1 progeny on MIR604. J Econ Entomol 103:2187–2196PubMedCrossRefGoogle Scholar
  83. Hibbard BE, Frank DL, Kurtz R, Boudreau E, Ellersieck MR, Odhiambo JF (2011) Mortality impact of Bt transgenic maize roots expressing eCry3.1Ab, mCry3A, and eCry3.1Ab plus mCry3A on western corn rootworm larvae in the field. J Econ Entomol 104:1584–1591PubMedCrossRefGoogle Scholar
  84. Huang F, Andow AA, Buschman LL (2011) Success of the high-dose/refuge resistance management strategy after 15 years of Bt crop use in North America. Entomol Exp Appl 140:1–16CrossRefGoogle Scholar
  85. Hummel HE (2003) Introduction of Diabrotica virgifera virgifera into the Old World and its consequences: a recently acquired invasive alien pest species on Zea mays from North America. Commun Agric Appl Biol Sci 68:45–57PubMedGoogle Scholar
  86. Hutchison W, Burkness E, Mitchell P, Moon R, Leslie T, Fleischer S, Abrahamson M, Hamilton KL, Steffey KL, Gray ME, Hellmich RL, Kaster LV, Hunt TE, Wright RJ, Pecinovsky K, Rabaey TL, Flood RB, Raun ES (2010) Areawide suppression of European corn borer with Bt maize reaps savings to non-Bt maize growers. Science 330:222–225PubMedCrossRefGoogle Scholar
  87. Ives AR, Andow DA (2002) Evolution of resistance to Bt crops: directional selection in structured environments. Ecol Lett 5:792–801CrossRefGoogle Scholar
  88. Jaffe G (2009) Complacency on the farm: significant noncompliance with EPA’s refuge requirements threatens the future effectiveness of genetically engineered pest-protected corn. Center for Science in the Public Interest. http://cspinet.org/new/pdf/complacencyonthefarm.pdf
  89. Kang J, Krupke CH (2009a) Likelihood of multiple mating in Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae). J Econ Entomol 102:2096–2100PubMedCrossRefGoogle Scholar
  90. Kang J, Krupke CH (2009b) Influence of weight of male and female western corn rootworm (Coleoptera: Chrysomelidae) on mating behaviours. Ann Entomol Soc Am 102:326–332CrossRefGoogle Scholar
  91. Kim KS, Sappington TW (2005) Genetic structuring of western corn rootworm (Coleoptera: Chrysomelidae) populations in the United States based on microsatellite loci analysis. Environ Entomol 34:494–503CrossRefGoogle Scholar
  92. Kiss J, Edwards CR, Berger HK, Cata P, Cean M, Cheek S, Derron J, Festic H, Furlan L, Igrc-Barcic J, Ivanova I, Lammers W, Omelyuta V, Princzinger G, Reynaud P, Sivcec I, Sivicek P, Urek G, Vahala O (2005a) Monitoring of western corn rootworm (Diabrotica virgifera virgifera LeConte) in Europe 1992–2003. In: Vidal S, Kuhlmann U, Edwards CR (eds) Western corn rootworm: ecology and management. CABI, Wallingford, pp 29–39CrossRefGoogle Scholar
  93. Kiss J, Komáromi J, Bayar JK, Edwards CR, Hatala-Zsellér I (2005b) Western corn rootworm (Diabrotica virgifera virgifera LeConte) and the crop rotation systems in Europe. In: Vidal S, Kuhlmann U, Edwards CR (eds) Western corn rootworm: ecology and management. CABI, Wallingford, pp 189–220CrossRefGoogle Scholar
  94. Kruger M, Van Rensburg JBJ, Van den Berg J (2009) Perspective on the development of stem borer resistance to Bt maize and refuge compliance at the Vaalharts irrigation scheme in South Africa. Crop Prot 28:684–689CrossRefGoogle Scholar
  95. Kruger M, Van Rensburg JBJ, Van den Berg J (2011) Resistance to Bt maize in Busseola fusca (Lepidoptera: Noctuidae) from Vaalharts, South Africa. Environ Entomol 40:477–483CrossRefGoogle Scholar
  96. Kruger M, Van Rensburg JBJ, Van den Berg J (2012) Transgenic Bt maize: farmers’ perceptions, refuge compliance and reports of stem borer resistance in South Africa. J Appl Entomol 136:38–50CrossRefGoogle Scholar
  97. Krupke C, Marquardt P, Johnson W, Weller S, Conley SP (2009) Volunteer corn presents new challenges for insect resistance management. Agron J 101:797–799CrossRefGoogle Scholar
  98. Lefko SA, Nowatzki TM, Thompson SD, Binning RR, Pascual MA, Peters ML, Simbro EJ, Stanley BH (2008) Characterizing laboratory colonies of western corn rootworm (Coleoptera: Chrysomelidae) selected for survival on maize containing event DAS-59122-7. J Appl Entomol 132:189–204CrossRefGoogle Scholar
  99. Levine E, Oloumi-Sadeghi H (1991) Management of diabroticite rootworms in corn. Ann Rev Entomol 36:229–255CrossRefGoogle Scholar
  100. Levine E, Oloumi-Sadeghi H (1996) Western corn rootworm (Coleoptera: Chrysomelidae) larval injury to corn grown for seed production following soybeans grown for seed production. J Econ Entomol 89:1010–1016Google Scholar
  101. Levine E, Spencer JL, Isard SA, Onstad DW, Gray ME (2002) Adaptation of the western corn rootworm to crop rotation: evolution of a new strain in response to a management practice. Am Entomol 48:94–107Google Scholar
  102. Liu YB, Tabashnik BE (1997) Inheritance of resistance to Bacillus thuringiensis toxin Cry1C in the diamondback moth. Appl Environ Entomol 63:2218–2223Google Scholar
  103. Lu Y, Wu L, Jiang Y, Guo Y, Desneux N (2012) Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature. doi:10.1038/nature11153 Google Scholar
  104. Ma BL, Meloche F, Wei L (2009) Agronomic assessment of Bt trait and seed or soil-applied insecticides on the control of corn rootworm and yield. Field Crop Res 111:189–196CrossRefGoogle Scholar
  105. MacIntosh SC (2010) Managing the risk of insect resistance to transgenic insect control traits: practical approaches in local environments. Pest Manag Sci 66:100–106PubMedCrossRefGoogle Scholar
  106. Mallet J, Porter P (1992) Preventing insect adaptation to insect-resistant crops: are seed mixtures or refugia the best strategy? Proc R Soc B Biol Sci 250:165–169CrossRefGoogle Scholar
  107. Marçon P, Young LJ, Steffey KL, Siegfried BD (1999) Baseline susceptibility of European corn borer (Lepidoptera: Crambidae) to Bacillus thuringiensis toxins. J Econ Entomol 92:279–285Google Scholar
  108. Marquardt PT, Krupke CH (2009) Dispersal and mating behaviour of Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae) in Bt cornfields. Environ Entomol 38:176–182PubMedCrossRefGoogle Scholar
  109. Marquardt PT, Krupke CH, Johnson WG (2012) Competition of transgenic volunteer corn with soybean and the effect on weed and insect resistance management. Weed Sci 60:193–198CrossRefGoogle Scholar
  110. Matten SR, Head GP, Quemada HD (2008) How governmental regulation can help or hinder the integration of Bt crops into IPM programs? In: Romeis J, Shelton AM, Kennedy GG (eds) Integration of insect-resistant genetically modified crops within IPM programs. Springer Science+Business Media BV, USA, pp 27–39CrossRefGoogle Scholar
  111. Meihls LN (2010) Development and characterization of resistance to transgenic corn in western corn rootworm. PhD dissertation, University of Missouri, p 111Google Scholar
  112. Meihls LN, Higdon ML, Siegfried BD, Miller NJ, Sappington TW, Ellersieck MR, Spencer TA, Hibbard BE (2008) Increased survival of western corn rootworm on transgenic corn within three generations of on-plants greenhouse selection. Proc Natl Acad Sci USA 105:19177–19182PubMedCrossRefGoogle Scholar
  113. Meihls LN, Higdon ML, Ellersieck M, Hibbard BE (2011) Selection for resistance to mCry3A-expressing transgenic corn in western corn rootworm. J Econ Entomol 104:1045–1054PubMedCrossRefGoogle Scholar
  114. Meinke LJ, Siegfried BD, Wright RJ, Chandler LD (1998) Adult susceptibility of Nebraska western corn rootworm (Coleoptera: Chrysomelidae) populations to selected insecticides. J Econ Entomol 91:594–600Google Scholar
  115. Meinke LJ, Sappington TW, Onstad DW, Guillemaud T, Miller NJ, Komáromi J, Levay N, Furlan L, Kiss J, Toth F (2009) Western corn rootworm (Diabrotica virgifera virgifera LeConte) population dynamics. Agric For Entomol 11:29–46CrossRefGoogle Scholar
  116. Meissle M, Pilz C, Romeis J (2009) Susceptibility of Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae) to the entomopathogenic fungus Metarhizium anisopliae when feeding on Bacillus thuringiensis Cry3Bb1-expressing maize. Appl Environ Microbiol 75:3937–3943PubMedCrossRefGoogle Scholar
  117. Meissle M, Mouron P, Musa T, Bigler F, Pons X, Vasileiadis VP, Otto S, Antichi D, Kiss J, Pálinkás Z, Dorner Z, van der Weide R, Groten J, Czembor E, Adamczyk J, Thibord JB, Melander B, Cordsen Nielsen G, Poulsen RT, Zimmermann O, Verschwele A, Oldenburg E (2010) Pests, pesticide use and alternative options in European maize production: current status and future prospects. J Appl Entomol 134:357–375CrossRefGoogle Scholar
  118. Meissle M, Hellmich RL, Romeis J (2011a) Impact of Cry3Bb1-expressing Bt maize on adults of the western corn rootworm, Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae). Pest Manag Sci 67:807–814PubMedCrossRefGoogle Scholar
  119. Meissle M, Romeis J, Bigler F (2011b) Bt maize and integrated pest management—a European perspective. Pest Manag Sci 67:1049–1058CrossRefGoogle Scholar
  120. Metcalf ER (1986) Foreword. In: Krysan JL, Miller TA (eds) Methods for the study of pest Diabrotica. Springer, New YorkGoogle Scholar
  121. Miller N, Estoup A, Toepfer S, Bourguet D, Lapchin L, Derridj S, Kim KS, Reynaud P, Furlan L, Guillemaud T (2005) Multiple transatlantic introductions of the western corn rootworm. Science 310:992PubMedCrossRefGoogle Scholar
  122. Miller NJ, Guillemaud T, Giordano R, Siegfried BD, Gray ME, Meinke LJ, Sappington TW (2009) Genes, gene flow and adaptation of Diabrotica virgifera virgifera. Agric For Entomol 11:47–60CrossRefGoogle Scholar
  123. Moar W, Roush R, Shelton A, Ferré J, MacIntosh S, Leonard BR, Abel C (2008) Field-evolved resistance to Bt toxins. Nat Biotechnol 26:1072–1074PubMedCrossRefGoogle Scholar
  124. Moeser J, Vidal S (2005) Nutritional resources used by the invasive maize pest Diabrotica virgifera virgifera in its new South-east-European distribution range. Entomol Exp Appl 114:55–63CrossRefGoogle Scholar
  125. Monsanto (2009) Monsanto biotechnology trait acreage: fiscal years 1996 to 2009. http://www.monsanto.com/investors/documents/2009/q4_biotech_acres.pdf
  126. Murphy AF, Ginzel MD, Krupke CH (2010) Evaluating western corn rootworm (Coleoptera: Chrysomelidae) emergence and root damage in a seed mix refuge. J Econ Entomol 103:147–157PubMedCrossRefGoogle Scholar
  127. Murphy AF, Seiter NJ, Krupke CH (2011) The impact of Bt maize as a natal host on adult head capsule width in field populations of western corn rootworm. Entomol Exp Appl 139:8–16CrossRefGoogle Scholar
  128. Naranjo SE (1990) Comparative flight behavior of Diabrotica virgifera virgifera and Diabrotica barberi in the laboratory. Entomol Exp Appl 55:79–90CrossRefGoogle Scholar
  129. Naranjo SE (1991) Movement of corn rootworm beetles, Diabrotica spp. (Coleoptera: Chrysomelidae), at cornfield boundaries in relation to sex, reproductive status and crop phenology. Environ Entomol 20:230–240Google Scholar
  130. Naranjo SE (1994) Flight orientation of Diabrotica virgifera virgifera and D. barberi (Coleoptera: Chrysomelidae) at habitat interfaces. Ann Entomol Soc Am 87:383–394Google Scholar
  131. Nowatzki TJ, Bradley N, Warren KK, Putnam S, Meinke LJ, Gosselin DC, Harvey FE, Hunt TE, Siegfried B (2003) In-field labeling of western corn rootworm adults (Coleoptera: Chrysomelidae) with rubidium. J Econ Entomol 96:1750–1759PubMedCrossRefGoogle Scholar
  132. Nowatzki TM, Zhou X, Meinke LJ, Vaughn T, Siegfried BD (2006) Effect of Bacillus thuringiensis Cry3Bb1 protein on the feeding behaviour and longevity of adult western corn rootworms (Coleoptera: Chrysomelidae). J Econ Entomol 99:927–930PubMedCrossRefGoogle Scholar
  133. Nowatzki TM, Lefko SA, Binning RR, Thompson SD, Spencer TA, Siegfried BD (2008) Validation of a novel resistance monitoring technique for corn rootworm (Coleoptera: Chrysomelidae) and event DAS-59122-7 maize. J Appl Entomol 132:177–188CrossRefGoogle Scholar
  134. OECD (2007) Consensus document on the safety information on transgenic plants expressing Bacillus thuringiensis-derived insect control proteins. In: Series on harmonisation of regulatory oversight in biotechnology [ENV/JM/MONO(2007)14], no. 42:1–10. http://www.oecd.org/dataoecd/36/61/46815888.pdf
  135. Oleson JD, Park YL, Nowatzki TM, Tollefson JJ (2005) Node-injury scale to evaluate root injury by corn rootworms (Coleoptera: Chrysomelidae). J Econ Entomol 98:1–8PubMedCrossRefGoogle Scholar
  136. Olmer KJ, Hibbard BE (2008) The nutritive value of dying maize and Setaria faberi roots for western corn rootworm (Coleoptera: Chrysomelidae) development. J Econ Entomol 101:1547–1556PubMedCrossRefGoogle Scholar
  137. Onstad DW (2006) Modeling larval survival and movement to evaluate seed mixtures of transgenic corn for control of western corn rootworm (Coleoptera: Chrysomelidae). J Econ Entomol 99:1407–1414PubMedCrossRefGoogle Scholar
  138. Onstad DW (2008) Insect resistance management: biology, economics, and prediction. Academic Press, LondonGoogle Scholar
  139. Onstad DW, Meinke LJ (2010) Modeling evolution of Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae) to transgenic corn with two insecticidal traits. J Econ Entomol 103:849–860PubMedCrossRefGoogle Scholar
  140. Onstad DW, Joselyn M, Isard S, Levine E, Spencer J, Bledsoe L, Edwards C, Di Fonzo C, Wilson H (1999) Modeling the spread of western corn rootworm (Coleoptera: Chrysomelidae) populations adapting to soybean-corn rotation. Environ Entomol 28:188–194Google Scholar
  141. Onstad DW, Guse CAG, Spencer JL, Levine E, Gray ME (2001a) Modeling the dynamics of adaptation to transgenic corn by western corn rootworm (Coleoptera: Chrysomelidae). J Econ Entomol 94:529–540PubMedCrossRefGoogle Scholar
  142. Onstad DW, Spencer JL, Guse CA, Levine E, Isard SA (2001b) Modeling evolution of behavioral resistance by an insect to crop rotation. Entomol Exp Appl 100:195–201CrossRefGoogle Scholar
  143. Onstad DW, Mitchell PD, Hurley TM, Lundgren JG, Porter RP, Krupke CH, Spencer JL, Difonzo CD, Baute TS, Hellmich RL, Buschman LL, Hutchison WD, Tooker JF (2011) Seeds of change: corn seed mixtures for resistance management and integrated pest management. J Econ Entomol 104:343–352PubMedCrossRefGoogle Scholar
  144. Oswald KJ, French BW, Nielson C, Bagley M (2011) Selection for Cry3Bb1 resistance in a genetically diverse population of nondiapausing western corn rootworm (Coleoptera: Chrysomelidae). J Econ Entomol 104:1038–1044PubMedCrossRefGoogle Scholar
  145. Oswald KJ, French BW, Nielson C, Bagley M (2012) Assessment of fitness costs in Cry3Bb1-resistant and susceptible western corn rootworm (Coleoptera: Chrysomelidae) laboratory colonies. J Appl Entomol. doi:10.1111/j.1439-0418.2012.01704.x Google Scholar
  146. Oyediran IO, Hibbard BE, Clark TL (2004) Prairie grasses as alternate hosts of the western corn rootworm (Coleoptera: Chrysomelidae). Environ Entomol 33:740–747CrossRefGoogle Scholar
  147. Oyediran IO, Hibbard BE, Clark TL (2005) Western corn rootworm (Coleoptera: Chrysomelidae) beetle emergence from weedy Cry3Bb1 rootworm-resistant transgenic maize. J Econ Entomol 98:1679–1684PubMedCrossRefGoogle Scholar
  148. Pan Z, Onstad DW, Nowatzki TM, Stanley BH, Meinke LJ, Flexner JL (2011) Western corn rootworm (Coleoptera: Chrysomelidae) dispersal and adaptation to single-toxin transgenic corn deployed with block or blended refuge. Environ Entomol 40:964–978PubMedCrossRefGoogle Scholar
  149. Petzold-Maxwell JL, Jaronski T, Gassmann AJ (2012a) Tritrophic interactions among Bt maize, an insect pest and entomopathogens: effects on development and survival of western corn rootworm. Ann Appl Biol 160:43–55CrossRefGoogle Scholar
  150. Petzold-Maxwell JL, Cibils-Stewart X, French BW, Gassmann AJ (2012b) Adaptation by western corn rootworm (Coleoptera: Chrysomelidae) to Bt maize: inheritance, fitness costs, and feeding preference. J Econ Entomol 104:1407–1418CrossRefGoogle Scholar
  151. Porter P, Cullen E, Sappington T, Schaafsma A, Pueppke S, Andow D, Bradshaw J, Buschman L, Cardoza YJ, DiFonzo C, French BW, Gassmann A, Gray ME, Hammond RB, Hibbard B, Krupke CH, Lundgren JG, Ostlie KR, Shields E, Spencer JL, Tooker JF, Youngman RR (2012) Letter from 22 members and participants of north central coordinating committee NCCC46 and other corn entomologists to EPA, March 5, 2012, http://www.organicconsumers.org/documents/Letter22Scientists.pdf
  152. Qaim M (2009) The economics of genetically modified crops. Ann Rev Res Econ 1:665–694CrossRefGoogle Scholar
  153. Rangasamy M, Siegfried BD (2011) Validation of RNA interference in western corn rootworm Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae) adults. Pest Manag Sci 68:587–591CrossRefGoogle Scholar
  154. Rausell C, García-Robles I, Sánchez J, Muñoz-Garay C, Martínez-Ramírez AC, Real MD, Bravo A (2004) Role of toxin activation on binding and pore formation activity of the Bacillus thuringiensis Cry3 toxins in membranes of Leptinotarsa decemlineata (Say). Biochim Biophys Acta 1660:99–105PubMedCrossRefGoogle Scholar
  155. Raybould A, Poppy GM (2012) Commercializing genetically modified crops under EU regulations—objectives and barriers. GM Crops Food Biotechnol Agric Food Chain 3:1–12Google Scholar
  156. Raybould A, Stacey D, Vlachos D, Graser G, Li X, Joseph R (2007) Non-target organism risk assessment of MIR604 maize expressing mCry3A for control of corn rootworm. J Appl Entomol 131:391–399CrossRefGoogle Scholar
  157. Razze JM, Mason CE (2012) Dispersal behavior of neonate European corn borer (Lepidoptera: Crambidae) on Bt corn. J Econ Entomol 105:1214–1223PubMedCrossRefGoogle Scholar
  158. Roush RT (1994) Managing pests and their resistance to Bacillus thuringiensis: can transgenic crops be better than sprays? Biocontrol Sci Technol 4:501–516CrossRefGoogle Scholar
  159. Roush RT (1998) Two-toxin strategies for management of insecticidal transgenic crops: can pyramiding succeed where pesticide mixtures have not? Phil Trans R Soc Lond B Biol Sci 353:1777–1786CrossRefGoogle Scholar
  160. Saeglitz C, Bartsch D, Eber S, Gathmann A, Priesnitz KU, Schuphan I (2006) Monitoring the Cry1Ab susceptibility of European corn borer in Germany. J Econ Entomol 99:1768–1773PubMedCrossRefGoogle Scholar
  161. Sanahuja G, Banakar R, Twyman RM, Capelle T, Christou P (2011) Bacillus thuringiensis: a century of research, development and commercial applications. Plant Biotechnol J 9:283–300PubMedCrossRefGoogle Scholar
  162. Schumann M, Vidal S (2012) Dispersal and spatial distribution of western corn rootworm larvae in relation to root phenology. Agric For Entomol. doi:10.1111/j.1461-9563.2012.00573.x Google Scholar
  163. Siegfried BD, Hellmich RL (2012) Understanding successful resistance management: the European corn borer and Bt corn in the United States. GM Crops Food Biotechnol Agric Food Chain 3:184–193CrossRefGoogle Scholar
  164. Siegfried BD, Spencer T (2012) Bt resistance monitoring in European corn borer and western corn rootworms. In: Oliver M, Li Y (eds) Gene containment. Wiley, New York (in press)Google Scholar
  165. Siegfried BD, Meinke LJ, Scharf ME (1998) Resistance management concerns for areawide management programs. J Agric Urban Entomol 15:359–369Google Scholar
  166. Siegfried BD, Spencer T, Nearman J (2000) Baseline susceptibility of the corn earworm (Lepidoptera: Noctuidae) to the Cry1Ab toxin from Bacillus thuringiensis toxin. J Econ Entomol 93:1265–1268PubMedCrossRefGoogle Scholar
  167. Siegfried BD, Meinke LJ, Parimi S, Scharf ME, Nowatzki TJ, Zhou X, Chandler LD (2004) Monitoring western corn rootworm (Coleoptera: Chrysomelidae) susceptibility to carbaryl and cucurbitacin baits in the areawide management pilot program. J Econ Entomol 97:1726–1733PubMedCrossRefGoogle Scholar
  168. Siegfried BD, Vaughn TT, Spencer T (2005) Baseline susceptibility of western corn rootworm (Coleoptera: Chrysomelidae) to Cry3Bb1 Bacillus thuringiensis toxin. J Econ Entomol 98:1320–1324PubMedCrossRefGoogle Scholar
  169. Siegfried BD, Spencer T, Crespo AL, Storer NP, Head GP, Owens ED, Guyer D (2007) Ten years of Bt resistance monitoring in the European corn borer: what we know, what we don’t know, and what we can do better? Am Entomol 53:208–214Google Scholar
  170. Spencer JL, Mabry TR, Vaughn TT (2003) Use of transgenic plants to measure insect herbivore movement. J Econ Entomol 96:1738–1749PubMedCrossRefGoogle Scholar
  171. Spencer JL, Levine E, Isard SA, Mabry TR (2005) Movement, dispersal and behaviour of western corn rootworm adults in rotated maize and soybean fields. In: Vidal S, Kuhlmann U, Edwards CR (eds) Western corn rootworm: ecology and management. CABI, Wallingford, pp 121–144CrossRefGoogle Scholar
  172. Spencer JL, Hibbard BE, Moeser J, Onstad DW (2009) Behavior and ecology of the western corn rootworm (Diabrotica virgifera virgifera LeConte). Agric For Entomol 11:9–27CrossRefGoogle Scholar
  173. Storer NP (2003) A spatially explicit model simulating western corn rootworm (Coleoptera: Chrysomelidae) adaptation to insect-resistant maize. J Econ Entomol 96:1530–1547PubMedCrossRefGoogle Scholar
  174. Storer NP, Babcock JM, Edwards JM (2006) Field measures of western corn rootworm (Coleoptera: Chrysomelidae) mortality caused by Cry34/35Ab1 proteins expressed in maize event 59122 and implications for trait durability. J Econ Entomol 99:1381–1387PubMedCrossRefGoogle Scholar
  175. Storer NP, Babcock JM, Schlenz M, Meade T, Thompson GD, Bing JW, Huckaba RM (2010) Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperla (Lepidoptera: Noctuidae) in Puerto Rico. J Econ Entomol 103:1031–1038PubMedCrossRefGoogle Scholar
  176. Storer NP, Kubiszak ME, King EJ, Thompson GD, Santos AC (2012a) Status of resistance to Bt maize in Spodoptera frugiperda: lessons from Puerto Rico. J Invertebr Pathol 110:294–300PubMedCrossRefGoogle Scholar
  177. Storer NP, Thompson GD, Head GP (2012b) Application of pyramided traits against Lepidoptera in insect resistance management for Bt crops. GM Crops Food Biotechnol Agric Food Chain 3:154–162CrossRefGoogle Scholar
  178. Szalai M, Köszegi J, Toepfer S, Kiss J (2011) Colonisation of first-year maize fields by western corn rootworm (Diabrotica virgifera virgifera) from adjacent infested maize fields. Acta Phytopathol Entomol Hun 46:215–226Google Scholar
  179. Széll E, Zsellér I, Ripka G, Kiss J, Princzinger G (2005) Strategies for controlling western corn rootworm (Diabrotica virgifera virgifera). Acta Agron Hun 53:71–79CrossRefGoogle Scholar
  180. Tabashnik BE (1994) Delaying insect adaptation to transgenic plants: seed mixtures and refugia reconsidered. Proc R Soc B Biol Sci 255:7–12CrossRefGoogle Scholar
  181. Tabashnik BE (2008) Delaying insect resistance to transgenic crops. Proc Natl Acad Sci USA 105:19029–19030PubMedCrossRefGoogle Scholar
  182. Tabashnik BE, Gould F (2012) Delaying corn rootworm resistance to Bt corn. J Econ Entomol 105:767–776PubMedCrossRefGoogle Scholar
  183. Tabashnik BE, Gould F, Carrière Y (2004) Delaying evolution of insect resistance to transgenic crops by decreasing dominance and heritability. J Evol Biol 17:904–912PubMedCrossRefGoogle Scholar
  184. Tabashnik BE, Gassmann AJ, Crowder DW, Carrière Y (2008a) Insect resistance to Bt crops: evidence versus theory? Nat Biotechnol 26:199–202PubMedCrossRefGoogle Scholar
  185. Tabashnik BE, Gassmann AJ, Crowder DW, Carrière Y (2008b) Reply to Field-evolved resistance to Bt toxins. Nat Biotechnol 26:1074–1076CrossRefGoogle Scholar
  186. Tabashnik BE, Van Rensburg JBJ, Carrière Y (2009) Field-evolved insect resistance to Bt crops: definition, theory and data. J Econ Entomol 102:2011–2025PubMedCrossRefGoogle Scholar
  187. Tinsley NA, Estes RE, Gray ME (2012) Validation of a nested error component model to estimate damage caused by corn rootworm larvae. J Appl Entomol. doi:10.1111/j.1439-0418.2012.01736.x Google Scholar
  188. Toepfer S, Levay N, Kiss J (2006) Adult movements of newly introduced alien Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae) from non-host habitats. Bull Entomol Res 96:327–335PubMedGoogle Scholar
  189. Toepfer S, Peters A, Ehlers R-U, Kuhlmann U (2008) Comparative assessment of the efficacy of entomopathogenic nematodes species at reducing western corn rootworm larvae and root damage in maize. J Appl Entomol 132:337–348CrossRefGoogle Scholar
  190. Toepfer S, Haye T, Erlandson M, Goettel M, Lundgren JG, Kleespies RG, Weber DC, Walsh GC, Peters A, Ehlers R-U, Strasser H, Moore D, Keller S, Vidal S, Kuhlmann U (2009) A review of the natural enemies of beetles in the subtribe Diabroticina (Coleoptera: Chrysomelidae): implications for sustainable pest management. Biocontrol Sci Technol 19:1–65CrossRefGoogle Scholar
  191. Tuska T, Kiss J, Edwards CR, Szabó Z, Ondrusz I, Miskucza P, Garai A (2002) Determination of economic threshold for silk feeding by western corn rootworm (Diabrotica virgifera virgifera LeConte) adults in seed corn. Növényvédelem 38:505–511Google Scholar
  192. Tyutyunov Y, Zhadanovskaya E, Bourguet D, Arditi R (2008) Landscape refuges delay resistance of the European corn borer to Bt-maize: a demo-genetic dynamic model. Theor Pop Biol 74:138–146CrossRefGoogle Scholar
  193. US EPA (2007) Biopesticides registration action document: modified Cry3A protein and the genetic material necessary for its production (via elements of pZM26) in event MIR604 corn SYN-IR604-8. http://www.epa.gov/oppbppd1/biopesticides/ingredients/tech_docs/brad_006509.pdf
  194. US EPA (2009a) Minutes of a scientific advisory panel held Feb. 23–24, 2009 on resistance risks of using a seed mix refuge with Pioneer’s Optimum® AcreMax™1 rootworm protected corn. http://www.epa.gov/scipoly/sap/meetings/2009/february/232009finalreport.pdf
  195. US EPA (2009b) Pesticide fact sheet. MON 89034, TC1507, MON 88017 and DAS-59122-7. http://www.epa.gov/oppbppd1/biopesticides/pips/smartstax-factsheet.pdf
  196. US EPA (2010a) Biopesticides registration action document: Bacillus thuringiensis Cry3Bb1 protein and the genetic material necessary for its production (vector PV-ZMIR13L) in MON 863 corn (OECD unique identifier: MON-ØØ863-5) PC code: 006484 and Bacillus thuringiensis Cry3Bb1 protein and the genetic material necessary for its production (vector PV-ZMIR39) in MON 88017 corn (OECD unique identifier: MON-88Ø17-3) PC code: 006498. http://www.epa.gov/oppbppd1/biopesticides/pips/cry3bb1-brad.pdf
  197. US EPA (2010b) Biopesticides registration action document: Bacillus thuringiensis Cry34Ab1 and Cry35Ab1 proteins and the genetic material necessary for their production (PHP17662 T-DNA) in event DAS-59122-7 corn (OECD unique identifier: DAS-59122-7), PC code: 006490. http://www.epa.gov/oppbppd1/biopesticides/pips/cry3435ab1-brad.pdf
  198. US EPA (2010c) Biopesticides registration action document: Optimum® AcreMax™ Bt corn seed blends. http://www.epa.gov/oppbppd1/biopesticides/pips/bt-seed-blends.pdf
  199. US EPA (2011a) Updated BPPD IRM review of reports of unexpected Cry3Bb1 damage, Monsanto’s 2009 corn rootworm monitoring report, and revised corn rootworm resistance monitoring plan for MON 88017, MON 88017 × MON 810, MON 863, MON 863 × MON 810, MON 89034 × TC1507 × MON 88017 × DAS-59122-7, and MON 89034 × MON 88017 (EPA reg. nos. 524-551, 524-552, 524-528, 524-545, and 68467-7); MRIDs 478846-01 and 478875-03. https://motherjones.com/files/epa-hq-opp-2011-0922-0003.pdf
  200. US EPA (2011b) Biopesticides registration action document: MON 89034 × TC1507 × MON 88017 × DAS-59122-7 (SmartStax ®) Bt corn seed blend. http://www.epa.gov/oppbppd1/biopesticides/pips/smartstax-seedblend.pdf
  201. Vachon V, Laprade R, Schwartz JL (2012) Current models of the mode of action of Bacillus thuringiensis insecticidal crystal proteins: a critical review. J Invertebr Pathol 111:1–12PubMedCrossRefGoogle Scholar
  202. van Rensburg JBJ (2007) First report of field resistance by the stem borer, Busseola fusca (Fuller) to Bt-transgenic maize. S Afr J Plant Soil 24:147–151Google Scholar
  203. van Rozen K, Ester A (2010) Chemical control of Diabrotica virgifera virgifera LeConte. J Appl Entomol 134:376–384CrossRefGoogle Scholar
  204. Vasileiadis VP, Sattin M, Otto S, Veres A, Pálinkás Z, Ban R, Pons X, Kudsk P, van der Weide R, Czembor E, Moonen AC, Kiss J (2011) Crop protection in European maize-based cropping systems: current practices and recommendations for innovative integrated pest management. Agric Syst 104:533–540CrossRefGoogle Scholar
  205. Vaughn T, Cavato T, Brar G, Coombe T, DeGooyer T, Ford S, Groth M, Howe A, Johnson S, Kolacz K, Pilcher C, Purcell J, Romano C, English L, Pershing J (2005) A method of controlling corn rootworm feeding using a Bacillus thuringiensis protein expressed in transgenic maize. Crop Sci 45:931–938CrossRefGoogle Scholar
  206. Walters FS, deFontes CM, Hart H, Warren GW, Chen JS (2010) Lepidopteran-active variable-region sequence imparts coleopteran activity in eCry3.1Ab, an engineered Bacillus thuringiensis hybrid insecticidal protein. Appl Environ Microbiol 76:3082–3088PubMedCrossRefGoogle Scholar
  207. Wan P, Huang Y, Tabashnik BE, Huang M, Wu K (2012) The halo effect: suppression of pink bollworm on non-Bt cotton by Bt cotton in China. PLoS One 7:e42004PubMedCrossRefGoogle Scholar
  208. Wesseler J, Fall EH (2010) Potential damage costs of Diabrotica virgifera virgifera infestation in Europe—the ‘no control’. J Appl Entomol 134:385–394CrossRefGoogle Scholar
  209. Wilhelm R, Sanvido O, Castanera P, Schmidt K, Schiemann J (2010) Monitoring the commercial cultivation of Bt maize in Europe—conclusions and recommendations for future monitoring practice. Environ Biosaf Res 8:219–225CrossRefGoogle Scholar
  210. Wilson TA, Hibbard BE (2004) Host suitability of nonmaize agroecosystem grasses for the western corn rootworm (Coleoptera: Chrysomelidae). Environ Entomol 33:1102–1108CrossRefGoogle Scholar
  211. Wright RJ, Scharf ME, Meinke LJ, Zhou X, Siegfried BD, Chandler LD (2000) Larval susceptibility of an insecticide-resistant western corn rootworm (Coleoptera: Chrysomelidae) population to soil insecticides: laboratory bioassays, assays of detoxication enzymes, and field performance. J Econ Entomol 93:7–13PubMedCrossRefGoogle Scholar
  212. Zhao JZ, Li YX, Collins HL, Shelton AM (2002) Examination of the F2 screen for rare resistance alleles to Bacillus thuringiensis toxins in the diamondback moth (Lepidoptera: Plutellidae). J Econ Entomol 95:14–21PubMedCrossRefGoogle Scholar
  213. Zhao JZ, Cao J, Collins HL, Bates SL, Roush RT, Earle ED, Shelton AM (2005) Concurrent use of transgenic plants expressing a single and two Bacillus thuringiensis genes speeds insect adaptation to pyramided plants. Proc Natl Acad Sci USA 102:8426–8430PubMedCrossRefGoogle Scholar
  214. Zukoff SN, Bailey W, Ellersieck MR, Hibbard BE (2012) Western corn rootworm larval movement in SmartStax seed blend scenarios. J Econ Entomol 104:1248–1260CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Yann Devos
    • 1
  • Lisa N. Meihls
    • 2
  • József Kiss
    • 3
  • Bruce E. Hibbard
    • 4
  1. 1.European Food Safety Authority, GMO UnitParmaItaly
  2. 2.USDA-NIFAThe Boyce Thompson Institute for Plant ResearchIthacaUSA
  3. 3.Plant Protection InstituteSzent István UniversityGödöllőHungary
  4. 4.USDA-ARS, Plant Genetics Research UnitUniversity of MissouriColumbiaUSA

Personalised recommendations