Transgenic Research

, Volume 22, Issue 1, pp 153–167 | Cite as

Delivery of multiple transgenes to plant cells by an improved version of MultiRound Gateway technology

  • Matthias Buntru
  • Stefanie Gärtner
  • Lena Staib
  • Fritz Kreuzaler
  • Nikolaus Schlaich
Original Paper

Abstract

At present, only few methods for the effective assembly of multigene constructs have been described. Here we present an improved version of the MultiRound Gateway technology, which facilitates plant multigene transformation. The system consists of two attL-flanked entry vectors, which contain an attR cassette, and a transformation-competent artificial chromosome based destination vector. By alternate use of the two entry vectors, multiple transgenes can be delivered sequentially into the Gateway-compatible destination vector. Multigene constructs that carried up to seven transgenes corresponding to more than 26 kb were assembled by seven rounds of LR recombination. The constructs were successfully transformed into tobacco plants and were stably inherited for at least two generations. Thus, our system represents a powerful, highly efficient tool for multigene plant transformation and may facilitate genetic engineering of agronomic traits or the assembly of genetic pathways for the production of biofuels, industrial or pharmaceutical compounds in plants.

Keywords

MultiRound Gateway Multigene plant transformation Gateway vectors Multigene vectors Transformation-competent artificial chromosome 

Supplementary material

11248_2012_9640_MOESM1_ESM.pdf (986 kb)
Supplementary material 1 (PDF 971 kb)

References

  1. Agrawal P, Kohli A, Twyman R, Christou P (2005) Transformation of plants with multiple cassettes generates simple transgene integration patterns and high expression levels. Mol Breed 16:247–260CrossRefGoogle Scholar
  2. Ashton AR, Hatch MD (1983) Regulation of C4 photosynthesis. Physical and kinetic properties of active (dithiol) and inactive (disulfide) NADP-malate dehydrogenase from Zea mays. Arch Biochem Biophys 227:406–415PubMedCrossRefGoogle Scholar
  3. Ashton AR, Burnell JN, Furbank RT, Jenkins CLD, Hatch MD (1990) Enzymes of C4 photosynthesis. Methods Plant Biochem 3:39–72CrossRefGoogle Scholar
  4. Birch RG (1997) Plant transformation: problems and strategies for practical application. Annu Rev Plant Physiol Plant Mol Biol 48:297–326PubMedCrossRefGoogle Scholar
  5. Birnboim H, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523PubMedCrossRefGoogle Scholar
  6. Bologna FP, Andreo CS, Drincovich MF (2007) Escherichia coli malic enzymes. Two isoforms with substantial differences in kinetic properties, metabolic regulation, and structure. J Bact 189:5937–5946PubMedCrossRefGoogle Scholar
  7. Bonifer C, Vidal M, Grosveld F, Sippel AE (1990) Tissue specific and position independent expression of the complete gene domain for chicken lysozyme in transgenic mice. EMBO J 9:2843–2848PubMedGoogle Scholar
  8. Chen L, Marmey P, Taylor NJ, Brizard JP, Espinoza C, D’Cruz P, Huet H, Zhang S, de Kochko A, Beachy RN, Fauquet CM (1998) Expression and inheritance of multiple transgenes in rice plants. Nat Biotechnol 16:1060–1064PubMedCrossRefGoogle Scholar
  9. Chen QJ, Zhou HM, Chen J, Wang XC (2006) A Gateway-based platform for multigene plant transformation. Plant Mol Biol 62:927–936PubMedCrossRefGoogle Scholar
  10. Chen QJ, Xie M, Ma XX, Dong L, Chen J, Wang XC (2010) MISSA is a highly efficient in vivo DNA assembly method for plant multiple-gene transformation. Plant Physiol 153:41–51PubMedCrossRefGoogle Scholar
  11. Cheo DL, Titus SA, Byrd DR, Hartley JL, Temple GF, Brasch MA (2004) Concerted assembly and cloning of multiple DNA segments using in vitro site-specific recombination. Functional analysis of multi-segment expression clones. Genome Res 14:2111–2120PubMedCrossRefGoogle Scholar
  12. Cohen SN, Chang AC, Hsu L (1972) Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc Natl Acad Sci USA 69:2110–2114PubMedCrossRefGoogle Scholar
  13. Conley EC, Saunders JR (1984) Recombination-dependent recircularization of linearized pBR322 plasmid DNA following transformation of Escherichia coli. Mol Gen Genet 194:211–218PubMedCrossRefGoogle Scholar
  14. Conley EC, Saunders VA, Saunders JR (1986) Deletion and rearrangement of plasmid DNA during transformation of Escherichia coli with linear plasmid molecules. Nucleic Acids Res 14:8905–8917PubMedCrossRefGoogle Scholar
  15. Curtis MD, Grossniklaus U (2003) A Gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol 133:462–469PubMedCrossRefGoogle Scholar
  16. Dafny-Yelin M, Tzfira T (2007) Delivery of multiple transgenes to plant cells. Plant Physiol 145:1118–1128PubMedCrossRefGoogle Scholar
  17. de Block M (1988) Genotype-independent leaf disc transformation of potato (Solanum tuberosum) using Agrobacterium tumefaciens. Theor Appl Genet 76:767–774CrossRefGoogle Scholar
  18. Dietze J, Blau A, Willmitzer L (1995) Agrobacterium-mediated transformation of potato (Solanum tuberosum). In: Potrykus I, Spangenberg G (eds) Gene transfer to plants XXII. Springer, Berlin, pp 24–29Google Scholar
  19. Earley KW, Haag JR, Pontes O, Opper K, Juehne T, Song K, Pikaard CS (2006) Gateway-compatible vectors for plant functional genomics and proteomics. Plant J 45:616–629PubMedCrossRefGoogle Scholar
  20. Engler C, Kandzia R, Marillonnet S (2008) A one pot, one step, precision cloning method with high throughput capability. PLoS One 3:e3647PubMedCrossRefGoogle Scholar
  21. Francois I, Broekaert W, Cammue B (2002) Different approaches for multi-transgene-stacking in plants. Plant Sci 163:281–295CrossRefGoogle Scholar
  22. Fujisawa M, Takita E, Harada H, Sakurai N, Suzuki H, Ohyama K, Shibata D, Misawa N (2009) Pathway engineering of Brassica napus seeds using multiple key enzyme genes involved in ketocarotenoid formation. J Exp Bot 60:1319–1332PubMedCrossRefGoogle Scholar
  23. Grosveld F, van Assendelft GB, Greaves DR, Kollias G (1987) Position-independent, high-level expression of the human beta-globin gene in transgenic mice. Cell 51:975–985PubMedCrossRefGoogle Scholar
  24. Hartley JL, Temple GF, Brasch MA (2000) DNA cloning using in vitro site-specific recombination. Genome Res 10:1788–1795PubMedCrossRefGoogle Scholar
  25. Hausler RE, Holtum JA, Latzko E (1987) CO2 is the inorganic carbon substrate of NADP malic enzymes from Zea mays and from wheat germ. FEBS J 163:619–626Google Scholar
  26. Igarashi D, Miwa T, Seki M, Kobayashi M, Kato T, Tabata S, Shinozaki K, Ohsumi C (2003) Identification of photorespiratory glutamate. Glyoxylate aminotransferase (GGAT) gene in Arabidopsis. Plant J 33:975–987PubMedCrossRefGoogle Scholar
  27. Karimi M, de Meyer B, Hilson P (2005) Modular cloning in plant cells. Trends Plant Sci 10:103–105PubMedCrossRefGoogle Scholar
  28. Kertbundit S, de Greve H, Deboeck F, van Montagu M, Hernalsteens JP (1991) In vivo random beta-glucuronidase gene fusions in Arabidopsis thaliana. Proc Natl Acad Sci USA 88:5212–5216PubMedCrossRefGoogle Scholar
  29. Koncz C, Martini N, Mayerhofer R, Koncz-Kalman Z, Körber H, Redei GP, Schell J (1989) High-frequency T-DNA-mediated gene tagging in plants. Proc Natl Acad Sci USA 86:8467–8471PubMedCrossRefGoogle Scholar
  30. Lazo GR, Stein PA, Ludwig RA (1991) A DNA transformation competent Arabidopsis genomic library in Agrobacterium. Biotechnology 9:963–967PubMedCrossRefGoogle Scholar
  31. Li MZ, Elledge SJ (2005) MAGIC, an in vivo genetic method for the rapid construction of recombinant DNA molecules. Nat Genet 37:311–319PubMedCrossRefGoogle Scholar
  32. Li L, Zhou Y, Cheng X, Sun J, Marita JM, Ralph K, Chiang VL (2003) Combinatorial modification of multiple lignin traits in trees through multigene cotransformation. Proc Natl Acad Sci USA 100:4939–4944PubMedCrossRefGoogle Scholar
  33. Lin L, Liu YG, Xu X, Li B (2003) Efficient linking and transfer of multiple genes by a multigene assembly and transformation vector system. Proc Natl Acad Sci USA 100:5962–5967PubMedCrossRefGoogle Scholar
  34. Liu YG, Shirano Y, Fukaki H, Yanai Y, Tasaka M, Tabata S, Shibata D (1999) Complementation of plant mutants with large genomic DNA fragments by a transformation-competent artificial chromosome vector accelerates positional cloning. Proc Natl Acad Sci USA 96:6535–6540PubMedCrossRefGoogle Scholar
  35. Lyznik LA, Dress V (2008) Gene targeting for chromosome engineering applications in eukaryotic cells. Recent Pat Biotechnol 2:94–106PubMedCrossRefGoogle Scholar
  36. Magnani E, Bartling L, Hake S (2006) From gateway to MultiSite gateway in one recombination event. BMC Mol Biol 7:46PubMedCrossRefGoogle Scholar
  37. McBride KE, Summerfelt KR (1990) Improved binary vectors for Agrobacterium-mediated plant transformation. Plant Mol Biol 14:269–276PubMedCrossRefGoogle Scholar
  38. Muyrers JP, Zhang Y, Stewart AF (2001) Techniques. Recombinogenic engineering–new options for cloning and manipulating DNA. Trends Biochem Sci 26:325–331PubMedCrossRefGoogle Scholar
  39. Nadolska-Orczyk A, Orczyk W, Przetakiewicz A (2000) Agrobacterium-mediated transformation of cereals—from technique development to its application. Acta Physiol Plantarum 22:77–88CrossRefGoogle Scholar
  40. Naqvi S, Farre G, Sanahuja G, Capell T, Zhu C, Christou P (2010) When more is better. Multigene engineering in plants. Trends Plant Sci 15:48–56PubMedCrossRefGoogle Scholar
  41. Padidam M, Cao Y (2001) Elimination of transcriptional interference between tandem genes in plant cells. Biotechniques 31(328–30):332–334Google Scholar
  42. Pawlowski WP, Somers DA (1996) Transgene inheritance in plants genetically engineered by microprojectile bombardment. Mol Biotechnol 6:17–30PubMedCrossRefGoogle Scholar
  43. Rademacher T, Hausler RE, Hirsch HJ, Zhang L, Lipka V, Weier D, Kreuzaler F, Peterhansel C (2002) An engineered phosphoenolpyruvate carboxylase redirects carbon and nitrogen flow in transgenic potato plants. Plant J 32:25–39PubMedCrossRefGoogle Scholar
  44. Sasaki Y, Sone T, Yoshida S, Yahata K, Hotta J, Chesnut JD, Honda T, Imamoto F (2004) Evidence for high specificity and efficiency of multiple recombination signals in mixed DNA cloning by the Multisite Gateway system. J Biotechnol 107:233–243PubMedCrossRefGoogle Scholar
  45. Stief A, Winter DM, Stratling WH, Sippel AE (1989) A nuclear DNA attachment element mediates elevated and position-independent gene activity. Nature 341:343–345PubMedCrossRefGoogle Scholar
  46. Sutherland P, McAlister-Henn L (1985) Isolation and expression of the Escherichia coli gene encoding malate dehydrogenase. J Bact 163:1074–1079PubMedGoogle Scholar
  47. Taverniers I, Papazova N, Bertheau Y, de Loose M, Holst-Jensen A (2008) Gene stacking in transgenic plants: towards compliance between definitions, terminology, and detection within the EU regulatory framework. Environ Biosafety Res 7:197–218PubMedCrossRefGoogle Scholar
  48. Walhout AJM, Sordella R, Brasch MA, Temple G, Hartley JL, Thierry-Mieg N, Vidal M (2000) Protein interaction mapping in C. elegans using proteins involved in vulval development. Science 287:116–122PubMedCrossRefGoogle Scholar
  49. Wang MB, Li ZY, Matthews PR, Upadhyaya NM, Waterhouse PM (1998) Improved vectors for Agrobacterium tumefaciens-mediated transformation of monocot plants. Acta Hortic 461:401–405Google Scholar
  50. Warming S, Costantino N, Court DL, Jenkins NA, Copeland NG (2005) Simple and highly efficient BAC recombineering using galK selection. Nucleic Acids Res 33:e36PubMedCrossRefGoogle Scholar
  51. Ye X, Al-Babili S, Klöti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the pro-Vitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303–305PubMedCrossRefGoogle Scholar
  52. Zeevi V, Liang Z, Arieli U, Tzfira T (2012) Zinc finger nuclease and homing endonuclease-mediated assembly of multigene plant transformation vectors. Plant Physiol 158:132–144PubMedCrossRefGoogle Scholar
  53. Zhao JZ, Cao J, Li Y, Collins HL, Roush RT, Earle ED, Shelton AM (2003) Transgenic plants expressing two Bacillus thuringiensis toxins delay insect resistance evolution. Nat Biotechnol 21:1493–1497PubMedCrossRefGoogle Scholar
  54. Zhong R, Richardson EA, Ye ZH (2007) Two NAC domain transcription factors, SND1 and NST1, function redundantly in regulation of secondary wall synthesis in fibers of Arabidopsis. Planta 225:1603–1611PubMedCrossRefGoogle Scholar
  55. Zhu B, Cai G, Hall EO, Freeman GJ (2007) In-fusion assembly. Seamless engineering of multidomain fusion proteins, modular vectors, and mutations. Biotechniques 43:354–359PubMedCrossRefGoogle Scholar
  56. Zhu C, Naqvi S, Breitenbach J, Sandmann G, Christou P, Capell T (2008) Combinatorial genetic transformation generates a library of metabolic phenotypes for the carotenoid pathway in maize. Proc Natl Acad Sci USA 105:18232–18237PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Matthias Buntru
    • 1
  • Stefanie Gärtner
    • 1
  • Lena Staib
    • 1
  • Fritz Kreuzaler
    • 1
  • Nikolaus Schlaich
    • 1
  1. 1.Institute for Biology IRWTH Aachen UniversityAachenGermany

Personalised recommendations