Advertisement

Transgenic Research

, Volume 22, Issue 1, pp 179–185 | Cite as

A germline-competent embryonic stem cell line from NOD.Cg-Prkdc scid Il2rg tm1Wjl /SzJ (NSG) mice

  • Carlisle P. LandelEmail author
  • Jennifer Dunlap
  • John B. Patton
  • Tim Manser
Brief Communication

Abstract

The NOD.Cg-Prkdc scid Il2rg tm1Wjl /SzJ mouse strain, commonly known as NSG (for NOD SCID Gamma) is severely immunodeficient and thus is an excellent recipient for xenografts, and in particular for engrafting human tumor cells and human hematopoietic stem cells. In the latter case, these cells give rise to many human hematopoetic lineages in their NSG hosts, resulting in recapitulation of many of the features of a human immune system. However, the immune system of these “humanized mice” (huMice) is not completely functional, in part because of a lack of expression of necessary human cytokines and HLA molecules by NSG host tissues. In order to facilitate the genetic modification of this strain in order to improve the huMouse model, we have created germline competent ES cells of this strain in which such modifications can be carried out.

Keywords

NSG mice ES cells Humanized mice 

Notes

Acknowledgments

This work was supported by 5 P30 CA 56036-12.

References

  1. André MC, Erbacher A, Gille C et al (2010) Long-term human CD34+ stem cell-engrafted nonobese diabetic/SCID/IL-2R gamma(null) mice show impaired CD8+ T cell maintenance and a functional arrest of immature NK cells. J Immunol 185:2710–2720. doi: 10.4049/jimmunol.1000583 PubMedCrossRefGoogle Scholar
  2. Baenziger S, Tussiwand R, Schlaepfer E et al (2006) Disseminated and sustained HIV infection in CD34+ cord blood cell-transplanted Rag2-/-gamma c-/- mice. Proc Natl Acad Sci USA 103:15951–15956. doi: 10.1073/pnas.0604493103 PubMedCrossRefGoogle Scholar
  3. Bankert RB, Balu-Iyer SV, Odunsi K et al (2011) Humanized mouse model of ovarian cancer recapitulates patient solid tumor progression, ascites formation, and metastasis. PLoS One 6:e24420. doi: 10.1371/journal.pone.0024420 PubMedCrossRefGoogle Scholar
  4. Bente DA, Melkus MW, Garcia JV, Rico-Hesse R (2005) Dengue fever in humanized NOD/SCID mice. J Virol 79:13797–13799. doi: 10.1128/JVI.79.21.13797-13799.2005 PubMedCrossRefGoogle Scholar
  5. Berges BK, Wheat WH, Palmer BE et al (2006) HIV-1 infection and CD4 T cell depletion in the humanized Rag2-/-gamma c-/- (RAG-hu) mouse model. Retrovirology 3:76. doi: 10.1186/1742-4690-3-76 PubMedCrossRefGoogle Scholar
  6. Billerbeck E, Barry WT, Mu K et al (2011) Development of human CD4+ FoxP3+ regulatory T cells in human stem cell factor-, granulocyte-macrophage colony-stimulating factor-, and interleukin-3-expressing NOD-SCID IL2Rγ(null) humanized mice. Blood 117:3076–3086. doi: 10.1182/blood-2010-08-301507 PubMedCrossRefGoogle Scholar
  7. Bosma GC, Custer RP, Bosma MJ (1983) A severe combined immunodeficiency mutation in the mouse. Nature 301:527–530PubMedCrossRefGoogle Scholar
  8. Cao X, Shores EW, Hu-Li J et al (1995) Defective lymphoid development in mice lacking expression of the common cytokine receptor gamma chain. Immunity 2:223–238PubMedCrossRefGoogle Scholar
  9. Chen Q, Khoury M, Chen J (2009) Expression of human cytokines dramatically improves reconstitution of specific human-blood lineage cells in humanized mice. Proc Natl Acad Sci USA 106:21783–21788. doi: 10.1073/pnas.0912274106 PubMedCrossRefGoogle Scholar
  10. Choi B, Chun E, Kim M et al (2011) Human T cell development in the liver of humanized NOD/SCID/IL-2Rγ(null)(NSG) mice generated by intrahepatic injection of CD34(+) human (h) cord blood (CB) cells. Clin Immunol 139:321–335. doi: 10.1016/j.clim.2011.02.019 PubMedCrossRefGoogle Scholar
  11. Danner R, Chaudhari SN, Rosenberger J et al (2011) Expression of HLA class II molecules in humanized NOD.Rag1KO.IL2RgcKO mice is critical for development and function of human T and B cells. PLoS One 6:e19826. doi: 10.1371/journal.pone.0019826 PubMedCrossRefGoogle Scholar
  12. Drake AC, Chen Q, Chen J (2012) Engineering humanized mice for improved hematopoietic reconstitution. Cell Mol Immunol. doi: 10.1038/cmi.2012.6 PubMedGoogle Scholar
  13. Firoz Mian M, Pek EA, Chenoweth MJ, Ashkar AA (2010) Humanized mice are susceptible to Salmonella typhi infection. Cell Mol Immunol 8:83–87. doi: 10.1038/cmi.2010.52 PubMedCrossRefGoogle Scholar
  14. Frecha C, Fusil F, Cosset F-L, Verhoeyen E (2011) In vivo gene delivery into hCD34 + cells in a humanized mouse model. Methods Mol Biol 737:367–390. doi: 10.1007/978-1-61779-095-9_15 PubMedCrossRefGoogle Scholar
  15. Greiner DL, Brehm MA, Hosur V et al (2011) Humanized mice for the study of type 1 and type 2 diabetes. Ann N Y Acad Sci 1245:55–58. doi: 10.1111/j.1749-6632.2011.06318.x PubMedCrossRefGoogle Scholar
  16. Ishikawa F, Yasukawa M, Lyons B et al (2005) Development of functional human blood and immune systems in NOD/SCID/IL2 receptor gamma chain (null) mice. Blood 106:1565–1573. doi: 10.1182/blood-2005-02-0516 PubMedCrossRefGoogle Scholar
  17. Ito M, Hiramatsu H, Kobayashi K et al (2002) NOD/SCID/gamma(c) (null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood 100:3175–3182. doi: 10.1182/blood-2001-12-0207 PubMedCrossRefGoogle Scholar
  18. Ito R, Takahashi T, Katano I, Ito M (2012) Current advances in humanized mouse models. Cell Mol Immunol. doi: 10.1038/cmi.2012.2 PubMedGoogle Scholar
  19. Jaiswal S, Pearson T, Friberg H et al (2009) Dengue virus infection and virus-specific HLA-A2 restricted immune responses in humanized NOD-scid IL2rgammanull mice. PLoS One 4:e7251. doi: 10.1371/journal.pone.0007251 PubMedCrossRefGoogle Scholar
  20. Joseph A, Zheng JH, Chen K et al (2010) Inhibition of in vivo HIV infection in humanized mice by gene therapy of human hematopoietic stem cells with a lentiviral vector encoding a broadly neutralizing anti-HIV antibody. J Virol 84:6645–6653. doi: 10.1128/JVI.02339-09 PubMedCrossRefGoogle Scholar
  21. Katano I, Ito R, Eto T et al (2011) Immunodeficient NOD-scid IL-2Rγ (null) mice do not display T and B cell leakiness. Exp Anim 60:181–186PubMedCrossRefGoogle Scholar
  22. Legrand N, Huntington ND, Nagasawa M et al (2011) Functional CD47/signal regulatory protein alpha (SIRP(alpha)) interaction is required for optimal human T- and natural killer- (NK) cell homeostasis in vivo. Proc Natl Acad Sci USA 108:13224–13229. doi: 10.1073/pnas.1101398108 PubMedCrossRefGoogle Scholar
  23. Lieber J, Eicher C, Wenz J et al (2011) The BH3 mimetic ABT-737 increases treatment efficiency of paclitaxel against hepatoblastoma. BMC Cancer 11:362. doi: 10.1186/1471-2407-11-362 PubMedCrossRefGoogle Scholar
  24. Manz MG (2007) Human-hemato-lymphoid-system mice: opportunities and challenges. Immunity 26:537–541. doi: 10.1016/j.immuni.2007.05.001 PubMedCrossRefGoogle Scholar
  25. Marodon G, Desjardins D, Mercey L et al (2009) High diversity of the immune repertoire in humanized NOD.SCID.gamma c-/- mice. Eur J Immunol 39:2136–2145. doi: 10.1002/eji.200939480 PubMedCrossRefGoogle Scholar
  26. Melkus MW, Estes JD, Padgett-Thomas A et al (2006) Humanized mice mount specific adaptive and innate immune responses to EBV and TSST-1. Nat Med 12:1316–1322. doi: 10.1038/nm1431 PubMedCrossRefGoogle Scholar
  27. Nichols J, Jones K, Phillips JM et al (2009) Validated germline-competent embryonic stem cell lines from nonobese diabetic mice. Nat Med 15:814–818. doi: 10.1038/nm.1996 PubMedCrossRefGoogle Scholar
  28. O’Connell RM, Balazs AB, Rao DS et al (2010) Lentiviral vector delivery of human interleukin-7 (hIL-7) to human immune system (HIS) mice expands T lymphocyte populations. PLoS One 5:e12009. doi: 10.1371/journal.pone.0012009 PubMedCrossRefGoogle Scholar
  29. Pek EA, Chan T, Reid S, Ashkar AA (2011) Characterization and IL-15 dependence of NK cells in humanized mice. Immunobiology 216:218–224. doi: 10.1016/j.imbio.2010.04.008 PubMedCrossRefGoogle Scholar
  30. Rathinam C, Poueymirou WT, Rojas J et al (2011) Efficient differentiation and function of human macrophages in humanized CSF-1 mice. Blood 118:3119–3128. doi: 10.1182/blood-2010-12-326926 PubMedCrossRefGoogle Scholar
  31. Rongvaux A, Willinger T, Takizawa H et al (2011) Human thrombopoietin knockin mice efficiently support human hematopoiesis in vivo. Proc Natl Acad Sci USA 108:2378–2383. doi: 10.1073/pnas.1019524108 PubMedCrossRefGoogle Scholar
  32. Sato K, Koyanagi Y (2011) The mouse is out of the bag: insights and perspectives on HIV-1-infected humanized mouse models. Exp Biol Med (Maywood). doi: 10.1258/ebm.2011.010294 Google Scholar
  33. Shultz LD, Lyons BL, Burzenski LM et al (2005) Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol 174:6477–6489PubMedGoogle Scholar
  34. Shultz LD, Ishikawa F, Greiner DL (2007) Humanized mice in translational biomedical research. Nat Rev Immunol 7:118–130. doi: 10.1038/nri2017 PubMedCrossRefGoogle Scholar
  35. Shultz LD, Saito Y, Najima Y et al (2010) Generation of functional human T-cell subsets with HLA-restricted immune responses in HLA class I expressing NOD/SCID/IL2r gamma(null) humanized mice. Proc Natl Acad Sci USA 107:13022–13027. doi: 10.1073/pnas.1000475107 PubMedCrossRefGoogle Scholar
  36. Steward CA, Humphray S, Plumb B et al (2010) Genome-wide end-sequenced BAC resources for the NOD/MrkTac() and NOD/ShiLtJ() mouse genomes. Genomics 95:105–110. doi: 10.1016/j.ygeno.2009.10.004 PubMedCrossRefGoogle Scholar
  37. Strowig T, Rongvaux A, Rathinam C et al (2011) Transgenic expression of human signal regulatory protein alpha in Rag2-/-{gamma}c-/- mice improves engraftment of human hematopoietic cells in humanized mice. Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1109769108 PubMedGoogle Scholar
  38. Takenaka K, Prasolava TK, Wang JC et al (2007) Polymorphism in Sirpa modulates engraftment of human hematopoietic stem cells. Nat Immunol 8:1313–1323. doi: 10.1038/ni1527 PubMedCrossRefGoogle Scholar
  39. Vosshenrich CAJ, Ranson T, Samson SI et al (2005) Roles for common cytokine receptor gamma-chain-dependent cytokines in the generation, differentiation, and maturation of NK cell precursors and peripheral NK cells in vivo. J Immunol 174:1213–1221PubMedGoogle Scholar
  40. Vuyyuru R, Liu H, Manser T, Alugupalli KR (2011) Characteristics of Borrelia hermsii infection in human hematopoietic stem cell-engrafted mice mirror those of human relapsing fever. Proc Natl Acad Sci USA 108:20707–20712. doi: 10.1073/pnas.1108776109 PubMedCrossRefGoogle Scholar
  41. Washburn ML, Bility MT, Zhang L et al (2011) A humanized mouse model to study hepatitis C virus infection, immune response, and liver disease. Gastroenterology 140:1334–1344. doi: 10.1053/j.gastro.2011.01.001 PubMedCrossRefGoogle Scholar
  42. Willinger T, Rongvaux A, Strowig T et al (2011a) Improving human hemato-lymphoid-system mice by cytokine knock-in gene replacement. Trends Immunol 32:321–327. doi: 10.1016/j.it.2011.04.005 PubMedCrossRefGoogle Scholar
  43. Willinger T, Rongvaux A, Takizawa H et al (2011b) Human IL-3/GM-CSF knock-in mice support human alveolar macrophage development and human immune responses in the lung. Proc Natl Acad Sci USA 108:2390–2395. doi: 10.1073/pnas.1019682108 PubMedCrossRefGoogle Scholar
  44. Ying Q-L, Wray J, Nichols J et al (2008) The ground state of embryonic stem cell self-renewal. Nature 453:519–523. doi: 10.1038/nature06968 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Carlisle P. Landel
    • 1
    • 2
    • 3
    Email author
  • Jennifer Dunlap
    • 2
  • John B. Patton
    • 1
  • Tim Manser
    • 1
    • 2
  1. 1.Department of Microbiology and ImmunologyThomas Jefferson UniversityPhiladelphiaUSA
  2. 2.The Kimmel Cancer CenterThomas Jefferson UniversityPhiladelphiaUSA
  3. 3.Transposagen Biopharmaceuticals IncLexingtonUSA

Personalised recommendations