Transgenic Research

, Volume 21, Issue 6, pp 1163–1181 | Cite as

Genetic transformation of fruit trees: current status and remaining challenges

  • Giorgio GambinoEmail author
  • Ivana Gribaudo


Genetic transformation has emerged as a powerful tool for genetic improvement of fruit trees hindered by their reproductive biology and their high levels of heterozygosity. For years, genetic engineering of fruit trees has focussed principally on enhancing disease resistance (against viruses, fungi, and bacteria), although there are few examples of field cultivation and commercial application of these transgenic plants. In addition, over the years much work has been performed to enhance abiotic stress tolerance, to induce modifications of plant growth and habit, to produce marker-free transgenic plants and to improve fruit quality by modification of genes that are crucially important in the production of specific plant components. Recently, with the release of several genome sequences, studies of functional genomics are becoming increasingly important: by modification (overexpression or silencing) of genes involved in the production of specific plant components is possible to uncover regulatory mechanisms associated with the biosynthesis and catabolism of metabolites in plants. This review focuses on the main advances, in recent years, in genetic transformation of the most important species of fruit trees, devoting particular attention to functional genomics approaches and possible future challenges of genetic engineering for these species in the post-genomic era.


Abiotic stress Disease resistance Functional genomics Genome sequencing Marker-free plants Tissue-specific promoters 



Out thanks go to Mickael Malnoy (Foundation E. Mach, San Michele all’Adige, Italy) for providing photographs of transgenic apples.


  1. Atkinson RG, Gunaseelan K, Wang MY et al (2011) Dissecting the role of climacteric ethylene in kiwifruit (Actinidia chinensis) ripening using a 1-aminocyclopropane-1-carboxylic acid oxidase knockdown line. J Exp Bot 62:3821–3835PubMedCrossRefGoogle Scholar
  2. Ballester A, Cervera M, Peña L (2008) Evaluation of selection strategies alternative to nptII in genetic transformation of citrus. Plant Cell Rep 27:1005–1015PubMedCrossRefGoogle Scholar
  3. Ballester A, Cervera M, Peña L (2010) Selectable marker-free transgenic orange plants recovered under non-selective conditions and through PCR analysis of all regenerants. Plant Cell Tissue Organ Cult 102:329–336Google Scholar
  4. Basson CE, Groenewald J-H, Kossmann J et al (2011) Upregulation of pyrophosphate: fructose 6-phosphate 1-phosphotransferase (PFP) activity in strawberry. Transgenic Res 20:925–931PubMedCrossRefGoogle Scholar
  5. Bau H-J, Cheng Y-H, Yu T-A et al (2003) Broad-spectrum resistance to different geographic strains of Papaya ringspot virus in coat protein gene transgenic papaya. Phytopathology 93:112–120PubMedCrossRefGoogle Scholar
  6. Bhatti S, Jha G (2010) Current trends and future prospects of biotechnological interventions through tissue culture in apple. Plant Cell Rep 29:1215–1225PubMedCrossRefGoogle Scholar
  7. Broothaerts W, Keulemans J, Van Nerum I (2004) Self-fertile apple resulting from S-RNase gene silencing. Plant Cell Rep 22:497–501PubMedCrossRefGoogle Scholar
  8. Cardoso SC, Mendes JMB, Boscariol-Camargo RL et al (2010) Transgenic sweet orange (Citrus sinensis L. Osbeck) expressing the attacin A gene for resistance to Xanthomonas citri subsp. Citri. Plant Mol Biol Rep 28:185–192CrossRefGoogle Scholar
  9. Cervera M, Navarro L, Peña L (2009) Gene stacking in 1-year-cycling APETALA1 citrus plants for a rapid evaluation of transgenic traits in reproductive tissues. J Biotechnol 140:278–282PubMedCrossRefGoogle Scholar
  10. Cervera M, Esteban O, Gil M et al (2010) Transgenic expression in citrus of single-chain antibody fragments specific to Citrus tristeza virus confers virus resistance. Transgenic Res 19:1001–1015PubMedCrossRefGoogle Scholar
  11. Chaïb J, Torregrosa L, Mackenzie D et al (2010) The grape microvine—a model system for rapid forward and reverse genetics of grapevines. Plant J 62:1083–1092PubMedGoogle Scholar
  12. Chen Y-N, Hwang W-Z, Fang TJ et al (2011) The impact of transgenic papaya (TPY10-4) fruit supplementation on immune responses in ovalbumin-sensitisedmice. J Sci Food Agric 91:539–546PubMedCrossRefGoogle Scholar
  13. Cheng L, Zhou R, Reidel EJ et al (2005) Antisense inhibition of sorbitol synthesis leads to up-regulation of starch synthesis without altering CO2 assimilation in apple leaves. Planta 220:767–776PubMedCrossRefGoogle Scholar
  14. Cutanda-Perez M-C, Ageorges A, Gomez C et al (2009) Ectopic expression of VlmybA1 in grapevine activates a narrow set of genes involved in anthocyanin synthesis and transport. Plant Mol Biol 69:633–648PubMedCrossRefGoogle Scholar
  15. D’Angeli S, Altamura MM (2007) Osmotin induces cold protection in olive trees by affecting programmed cell death and cytoskeleton organization. Planta 225:1147–1163PubMedCrossRefGoogle Scholar
  16. Dalla Costa L, Mandolini M, Poletti V, Martinelli L (2010) Comparing 17-beta-estradiol supply strategies for applying the XVE-Cre/loxP system in grape gene transfer (Vitis vinifera L.). Vitis 49:201–208Google Scholar
  17. Dandekar AM, Teo G, Defilippi BG et al (2004) Effect of down-regulation of ethylene biosynthesis on fruit flavor complex in apple fruit. Transgenic Res 13:373–384CrossRefGoogle Scholar
  18. Darbani B, Eimanifar A, Stewart CN, Camargo WN (2007) Methods to produce marker-free transgenic plants. Plant Biotechnol J 2:83–90Google Scholar
  19. Dardick C, Callahan A, Scorza R et al (2011) Sequencing and reference assembly of the Prunus Domestica (European plum) genome. Plant and Animal Genomes XIX Conference, San Diego, W250Google Scholar
  20. de Campos MKF, de Carvalho K, de Souza FS (2011) Drought tolerance and antioxidant enzymatic activity in transgenic ‘Swingle’ citrumelo plants over-accumulating proline. Environ Exp Bot 72:242–250Google Scholar
  21. Delaunois B, Cordelier S, Conreux A, Clément C, Jeandet P (2009) Molecular engineering of resveratrol in plants. Plant Biotech J 7:2–12CrossRefGoogle Scholar
  22. Dhekney SA, Litz RE, Moraga Amador DA, Yadav AK (2007) Potential for introducing cold tolerance into papaya by transformation with C-repeat binding factor (CBF) genes. In Vitro Cell Dev Biol-Plant 43:195–202CrossRefGoogle Scholar
  23. Djennane S, Cesbron C, Sourice S et al (2011) Iron homeostasis and fire blight susceptibility in transgenic pear plants overexpressing a pea ferritin gene. Plant Sci 180:694–701PubMedCrossRefGoogle Scholar
  24. Domínguez A, Mendoza AH, Guerri J et al (2002) Pathogen-derived resistance to Citrus tristeza virus (CTV) in transgenic mexican lime (Citrus aurantifolia (Christ.) Swing.) plants expressing its p25 coat protein gene. Mol Breed 10:1–10CrossRefGoogle Scholar
  25. Dutt M, Li ZT, Dhekney SA, Gray DJ (2008) A co-transformation system to produce transgenic grapevines free of marker genes. Plant Sci 175:423–430CrossRefGoogle Scholar
  26. Endo T, Shimada T, Fujii H et al (2005) Ectopic expression of an FT homolog from Citrus confers an early flowering phenotype on trifoliate orange (Poncirus trifoliata L. Raf.). Transgenic Res 14:703–712PubMedCrossRefGoogle Scholar
  27. Endo T, Shimada T, Fujii H et al (2007) Promoter analysis of a type 3 metallothionein-like gene abundant in Satsuma mandarin (Citrus unshiu Marc.) fruit. Sci Hortic 112:207–214CrossRefGoogle Scholar
  28. Espley RV, Hellens RP, Putterill J et al (2007) Red coloration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J 49:414–427PubMedCrossRefGoogle Scholar
  29. Fagoaga C, Tadeo FR, Iglesias DJ et al (2007) Engineering of gibberellin levels in citrus by sense and antisense overexpression of a GA 20-oxidase gene modifies plant architecture. J Exp Bot 58:1407–1420PubMedCrossRefGoogle Scholar
  30. Fitch MMM, Manshardt RM, Gonsalves D et al (1990) Stable transformation of papaya via microprojectile bombardment. Plant Cell Rep 189:189–194Google Scholar
  31. Flachowsky H, Peil A, Sopanen T et al (2007) Overexpression of BpMADS4 from silver birch (Betula pendula Roth.) induces early-flowering in apple (Malus × domestica Borkh.). Plant Breed 126:137–145CrossRefGoogle Scholar
  32. Flachowsky H, Richter K, Kim WS et al (2008) Transgenic expression of a viral EPS-depolymerase is potentially useful to induce fire blight resistance in apple. Ann Appl Biol 153:345–355CrossRefGoogle Scholar
  33. Flachowsky H, Szankowski I, Fischer TC (2010) Transgenic apple plants overexpressing the Lc gene of maize show an altered growth habit and increased resistance to apple scab and fire blight. Planta 231:623–635PubMedCrossRefGoogle Scholar
  34. Fu X-Z, Chen C-W, Wang Y et al (2011) Ectopic expression of MdSPDS1 in sweet orange (Citrus sinensis Osbeck) reduces canker susceptibility: involvement of H2O2 production and transcriptional alteration. BMC Plant Biol 11:55PubMedCrossRefGoogle Scholar
  35. Gago J, Grima-Pettenati J, Gallego PP (2011) Vascular-specific expression of GUS and GFP reporter genes in transgenic grapevine (Vitis vinifera L. cv. Albariño) conferred by the EgCCR promoter of Eucalyptus gunnii. Plant Physiol Biochem 49:413–419PubMedCrossRefGoogle Scholar
  36. Gambino G, Perrone I, Carra A et al (2010) Transgene silencing in grapevines transformed with GFLV resistance genes: analysis of variable expression of transgene, siRNAs production and cytosine methylation. Transgenic Res 19:17–27PubMedCrossRefGoogle Scholar
  37. Gambino G, Minuto M, Boccacci P et al (2011) Characterization of expression dynamics of WOX homeodomain transcription factors during somatic embryogenesis in Vitis vinifera. J Exp Bot 62:1089–1101PubMedCrossRefGoogle Scholar
  38. Gao M, Matsuta N, Murayama H et al (2007) Gene expression and ethylene production in transgenic pear (Pyrus communis cv. ‘La France’) with sense or antisense cDNA encoding ACC oxidase. Plant Sci 173:32–42CrossRefGoogle Scholar
  39. Gentile A, Deng Z, La Malfa S et al (2007) Enhanced resistance to Phoma tracheiphila and Botrytis cinerea in transgenic lemon plants expressing a Trichoderma harzianum chitinase gene. Plant Breed 126:146–151CrossRefGoogle Scholar
  40. Gilissen LJWJ, Bolhaar STHP, Matos CI et al (2005) Silencing the major apple allergen Mal d 1 by using the RNA interference approach. J Allergy Clin Immunol 115:364–369PubMedCrossRefGoogle Scholar
  41. Gomez-Lim MA, Litz RE (2004) Genetic transformation of perennial tropical fruits. In Vitro Cell Dev Biol Plant 40:442–449CrossRefGoogle Scholar
  42. Guillaumie S, Mzid R, Méchin V et al (2010) The grapevine transcription factor WRKY2 influences the lignin pathway and xylem development in tobacco. Plant Mol Biol 72:215–234PubMedCrossRefGoogle Scholar
  43. Hanhineva K, Siljanen H, Kokko H et al (2009) Stilbene synthase gene transfer caused alterations in the phenylpropanoid metabolism of transgenic strawberry (Fragaria × ananassa). J Exp Bot 60:2093–2106PubMedCrossRefGoogle Scholar
  44. Herńandez M, Cabrera-Ponce JL, Fragoso G et al (2007) A new highly effective anticysticercosis vaccine expressed in transgenic papaya. Vaccine 25:4252–4260PubMedCrossRefGoogle Scholar
  45. Hily JM, Scorza R, Malinowski T et al (2004) Stability of gene silencing-based resistance to Plum pox virus in transgenic plum (Prunus domestica L.) under field conditions. Transgenic Res 13:427–436PubMedCrossRefGoogle Scholar
  46. Hily JM, Scorza R, Webb K, Ravelonandro M (2005) Accumulation of the long class of siRNA is associated with resistance to Plum pox virus in a transgenic woody perennial plum tree. Mol Plant Microbe Interact 18:794–799PubMedCrossRefGoogle Scholar
  47. Hoffmann T, Kalinowski G, Schwab W (2006) RNAi-induced silencing of gene expression in strawberry fruit (Fragaria × ananassa) by agroinfiltration: a rapid assay for gene function analysis. Plant J 48:818–826PubMedCrossRefGoogle Scholar
  48. Jacobsen E, Schouten HJ (2009) Cisgenesis: an important subinvention for traditional plant breeding companies. Euphytica 170:235–247CrossRefGoogle Scholar
  49. Jaillon O, Aury JM, Noel B et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–468PubMedCrossRefGoogle Scholar
  50. Jiao Z, Deng J, Li G et al (2010) Study on the compositional differences between transgenic and non-transgenic papaya (Carica papaya L.). J Food Compos Anal 23:640–647CrossRefGoogle Scholar
  51. Jin WM, Dong J, Hu YL et al (2009) Improved cold-resistant performance in transgenic grape (Vitis vinifera L.) overexpressing cold-inducible transcription factors AtDREB1b. HortScience 44:35–39Google Scholar
  52. Johnston JW, Gunaseelan K, Pidakala P et al (2009) Co-ordination of early and late ripening events in apples is regulated through differential sensitivities to ethylene. J Exp Bot 60:2689–2699PubMedCrossRefGoogle Scholar
  53. Joshi SG, Schaart JG, Groenwold R et al (2011) Functional analysis and expression profiling of HcrVf1 and HcrVf2 for development of scab resistant cisgenic and intragenic apples. Plant Mol Biol 75:579–591PubMedCrossRefGoogle Scholar
  54. Karaaslan M, Hrazdina G (2010) Characterization of an expansin gene and its ripening-specific promoter fragments from sour cherry (Prunus cerasus L.) cultivars. Acta Physiol Plant 32:1073–1084CrossRefGoogle Scholar
  55. Kaul S, Koo HL, Jenkins J et al (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815CrossRefGoogle Scholar
  56. Kim M, Kim S-C, Song KJ et al (2010) Transformation of carotenoid biosynthetic genes using a micro-cross section method in kiwifruit (Actinidia deliciosa cv. Hayward). Plant Cell Rep 29:1339–1349PubMedCrossRefGoogle Scholar
  57. Kim IJ, Lee J, Han JA et al (2011) Citrus Lea promoter confers fruit-preferential and stress-inducible gene expression in Arabidopsis. Can J Plant Sci 91:459–466CrossRefGoogle Scholar
  58. Kobayashi S, Nakamura Y, Kaneyoshi Y et al (1996) Transformation of kiwifruit (Actinidia chinensis) and trifoliate orange (Poncirus trifoliata) with a synthetic gene encoding the human epidermal growth factor (hEGF). J Jpn Soc Hort Sci 64:763–769CrossRefGoogle Scholar
  59. Koca U, Berhow MA, Febres VJ (2009) Decreasing unpalatable flavonoid components in Citrus: the effect of transformation construct. Physiol Plantarum 137:101–114CrossRefGoogle Scholar
  60. Kohli A, Christou P (2008) Stable transgenes bear fruit. Nat Biotechnol 26:653–654PubMedCrossRefGoogle Scholar
  61. Kumar GBS, Ganapathi TR, Revathi CJ et al (2005) Expression of hepatitis B surface antigen in transgenic banana plants. Planta 222:484–493PubMedCrossRefGoogle Scholar
  62. Kung Y-J, Yu T-A, Huang C-H et al (2010) Generation of hermaphrodite Transgenic papaya lines with virus resistance via transformation of somatic embryos derived from adventitious roots of in vitro shoots. Transgenic Res 19:621–635PubMedCrossRefGoogle Scholar
  63. Lau JM, Korban SS (2010) Transgenic apple expressing an antigenic protein of the human respiratory syncytial virus. J Plant Physiol 167:920–927PubMedCrossRefGoogle Scholar
  64. Lee JK, Kim IJ (2011) Modulation of fruit softening by antisense suppression of endo-β-1,4-glucanase in strawberry. Mol Breed 27:375–383CrossRefGoogle Scholar
  65. Li Y, Zhang Y, Feng F et al (2010a) Overexpression of a Malus vacuolar Na+/H+ antiporter gene (MdNHX1) in apple rootstock M.26 and its influence on salt tolerance. Plant Cell Tissue Organ Cult 102:337–345CrossRefGoogle Scholar
  66. Li H, Xu Y, Xiao Y et al (2010b) Expression and functional analysis of two genes encoding transcription factors, VpWRKY1 and VpWRKY2, isolated from Chinese wild Vitis pseudoreticulata. Planta 232:1325–1337PubMedCrossRefGoogle Scholar
  67. Lin-Wang K, Bolitho K, Grafton K et al (2010) An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae. BMC Plant Biol 10:50PubMedCrossRefGoogle Scholar
  68. Liu H, Yang W, Liu D et al (2011) Ectopic expression of a grapevine transcription factor VvWRKY11 contributes to osmotic stress tolerance in Arabidopsis. Mol Biol Rep 38:417–427PubMedCrossRefGoogle Scholar
  69. López C, Cervera M, Fagoaga C et al (2010) Accumulation of transgene-derived siRNAs is not sufficient for RNAi-mediated protection against Citrus tristeza virus in transgenic Mexican lime Mol. Plant Pathol 11:33–41Google Scholar
  70. López-Gómez R, Cabrera-Ponce JL, Saucedo-Arias LJ et al (2009) Ripening in papaya fruit is altered by ACC oxidase cosuppression. Transgenic Res 18:89–97PubMedCrossRefGoogle Scholar
  71. López-Noguera S, Petri C, Burgos L (2009) Combining a regeneration-promoting gene and site specific recombination allows a more efficient apricot transformation and the elimination of marker genes. Plant Cell Rep 28:1781–1790PubMedCrossRefGoogle Scholar
  72. Lunkenbein S, Coiner H, Ric de Vos CH et al (2006) Molecular characterization of a stable antisense chalcone synthase phenotype in strawberry (Fragaria × ananassa). J Agric Food Chem 54:2145–2153PubMedCrossRefGoogle Scholar
  73. Maghuly F, Khan MA, Borroto Fernandez E et al (2008) Stress regulated expression of the GUS-marker gene (uidA) under the control of plant calmodulin and viral 35S promoters in a model fruit tree rootstock: Prunus incisa × serrula. J Biotechnol 135:105–116PubMedCrossRefGoogle Scholar
  74. Malinowski T, Cambra M, Capote N et al (2006) Field trials of plum clones transformed with the Plum pox virus coat protein (PPV-CP) gene. Plant Dis 90:1012–1018CrossRefGoogle Scholar
  75. Malnoy M, Venisse JS, Brisset NN, Chevreau E (2003) Expression of bovine lactoferrin cDNA confers resistance to Erwinia amylovora in transgenic pear. Mol Breed 12:231–244CrossRefGoogle Scholar
  76. Malnoy M, Jin Q, Borejsza-Wysocka EE et al (2007) Overexpression of the apple MpNPR1 gene confers increased disease resistance in Malus × domestica. Mol Plant Microbe Interact 20:1568–1580PubMedCrossRefGoogle Scholar
  77. Malnoy M, Boresja-Wysocka EE, Norelli JL et al (2010) Genetic transformation of apple (Malus × domestica) without use of a selectable marker gene. Tree Genet Genomes 6:423–433CrossRefGoogle Scholar
  78. Martelli GP (2009) Grapevine virology highlights 2006–09. Extended abstract of 16th ICVG meeting. Dijon, pp 15–23Google Scholar
  79. Matsuda N, Ikeda K, Kurosaka M et al (2009) Early flowering phenotype in transgenic pears (Pyrus communis L.) expressing the CiFT gene. J Jpn Soc Hort Sci 78:410–416CrossRefGoogle Scholar
  80. Matzke MA, Matzke A (1995) How and why do plants inactivate homologous (Trans) genes? Plant Physiol 107:679–685PubMedGoogle Scholar
  81. Mendes BMJ, Filho FAM, Filho AB et al (2009) Genetic transformation of Citrus sinensis cv. Hamlin with hrpN gene from Erwinia amylovora and evaluation of the transgenic lines for resistance to citrus canker. Sci Hortic 122:109–115CrossRefGoogle Scholar
  82. Mercado JA, Trainotti L, Jiménez-Bermúdez L et al (2010) Evaluation of the role of the endo-β-(1,4)-glucanase gene FaEG3 in strawberry fruit softening. Postharvest Biol Tech 55:8–14CrossRefGoogle Scholar
  83. Ming R, Hou S, Feng Y et al (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991–997PubMedCrossRefGoogle Scholar
  84. Molinari HBC, Marur CJ, Filho JCB et al (2004) Osmotic adjustment in transgenic citrus rootstock Carrizo citrange (Citrus sinensis Osb. × Poncirus trifoliata L. Raf.) overproducing proline. Plant Sci 167:1375–1381CrossRefGoogle Scholar
  85. Nishikawa F, Endo T, Shimada T (2008) Isolation and characterization of a Citrus FT/TFL1 homologue (CuMFT1), which shows quantitatively preferential expression in Citrus seeds. J Jpn Soc Hort Sci 77:38–46CrossRefGoogle Scholar
  86. Nishikawa F, Endo T, Shimada T et al (2010) Transcriptional changes in CiFT-introduced transgenic trifoliate orange (Poncirus trifoliata L. Raf.). Tree Physiol 30:431–439PubMedCrossRefGoogle Scholar
  87. Oliveira MM, Miguel CM, Raquel MH (1996) Transformation studies on woody fruit species. Plant Tissue Cult Biotech 2:76–92Google Scholar
  88. Palomer X, Llop-Tous I, Vendrell M et al (2006) Antisense down-regulation of strawberry endo-β-(1,4)-glucanase genes does not prevent fruit softening during ripening. Plant Sci 171:640–646CrossRefGoogle Scholar
  89. Park JI, Lee YK, Chung WI et al (2006) Modification of sugar composition in strawberry fruit by antisense suppression of an ADP glucose pyrophosphorylase. Mol Breed 17:269–279CrossRefGoogle Scholar
  90. Pasquali G, Biricolti S, Locatelli F et al (2008) Osmyb4 expression improves adaptive responses to drought and cold stress in transgenic apples. Plant Cell Rep 27:1677–1686PubMedCrossRefGoogle Scholar
  91. Peña L, Martín-Trillo M, José J et al (2001) Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their generation time. Nat Biotechnol 19:263–267PubMedCrossRefGoogle Scholar
  92. Petri C, Burgos L (2005) Transformation of fruit trees. Useful breeding tool or continued future prospect? Transgenic Res 14:15–26PubMedCrossRefGoogle Scholar
  93. Petri C, Webb K, Hily JM et al (2008) High transformation efficiency in plum (Prunus domestica L.): a new tool for functional genomics studies in Prunus spp. Mol Breed 22:581–591CrossRefGoogle Scholar
  94. Petri C, Hily J-M, Vann C et al (2011) A high-throughput transformation system allows the regeneration of marker-free plum plants (Prunus domestica). Ann Appl Biol 159:302–315CrossRefGoogle Scholar
  95. Powell M, Wheatley AO, Omoruyi F et al (2010) Comparative effects of dietary administered Transgenic and conventional papaya on selected intestinal parameters in rat models. Transgenic Res 19:511–518PubMedCrossRefGoogle Scholar
  96. Rai M (2006) Refinement of the Citrus tristeza virus resistance gene (Ctv) positional map in Poncirus trifoliata and generation of transgenic grapefruit (Citrus paradisi) plant lines with candidate resistance genes in this region. Plant Mol Biol 61:399–414PubMedCrossRefGoogle Scholar
  97. Rodríguez A, Andrés San, Cervera M et al (2011) Terpene down-regulation in orange reveals the role of fruit aromas in mediating interactions with insect herbivores and pathogens. Plant Physiol 156:793–802PubMedCrossRefGoogle Scholar
  98. Schaart JG, Tinnenbroek-Capel IEM, Krens FA (2011) Isolation and characterization of strong gene regulatory sequences from apple, Malus × domestica. Tree Genet Genomes 7:135–142CrossRefGoogle Scholar
  99. Schouten HJ, Krens FA, Jacobsen E (2006) Cisgenic plants are similar to traditionally bred plants. EMBO Rep 7:750–753PubMedCrossRefGoogle Scholar
  100. Scorza R, Ravelonandro M, Callahan AM et al (1994) Transgenic plums (Prunus domestica) express the Plum pox virus coat protein gene. Plant Cell Rep 14:18–22Google Scholar
  101. Singer SD, Hily J-M, Cox KD (2011) The sucrose synthase-1 promoter from Citrus sinensis directs expression of the β-glucuronidase reporter gene in phloem tissue and in response to wounding in transgenic plants. Planta 234:623–637PubMedCrossRefGoogle Scholar
  102. Smolka A, Li X-J, Heikelt C (2010) Effects of transgenic rootstocks on growth and development of non-transgenic scion cultivars in apple. Transgenic Res 19:933–948PubMedCrossRefGoogle Scholar
  103. Sorkina A, Bardosh G, Liu Y-Z et al (2011) Isolation of a citrus promoter specific for reproductive organs and its functional analysis in isolated juice sacs and tomato. Plant Cell Rep 30:1627–1640PubMedCrossRefGoogle Scholar
  104. Szankowski I, Waidmann S, Degenhardt J et al (2009a) Highly scab-resistant transgenic apple lines achieved by introgression of HcrVf2 controlled by different native promoter lengths. Tree Genet Genomes 5:349–358CrossRefGoogle Scholar
  105. Szankowski I, Flachowsky H, Li H et al (2009b) Shift in polyphenol profile and sublethal phenotype caused by silencing of anthocyanidin synthase in apple (Malus sp.). Planta 229:681–692PubMedCrossRefGoogle Scholar
  106. Tan B, Li DL, Xu S-X et al (2009) Highly efficient transformation of the GFP and MAC12.2 genes into precocious trifoliate orange (Poncirus trifoliate [L.] Raf), a potential model genotype for functional genomics studies in Citrus. Tree Genet Genomes 5:529–537CrossRefGoogle Scholar
  107. Tesniere C, Torregrosa L, Pradal M et al (2006) Effects of genetic manipulation of alcohol dehydrogenase levels on the response to stress and the synthesis of secondary metabolites in grapevine leaves. J Exp Bot 57:91–99PubMedCrossRefGoogle Scholar
  108. Tian N, Wang J, Xu ZQ (2011) Overexpression of Na+/H+ antiporter gene AtNHX1 from Arabidopsis thaliana improves the salt tolerance of kiwifruit (Actinidia deliciosa). S Afr J Bot 77:160–169CrossRefGoogle Scholar
  109. Tränkner C, Lehmann S, Hoenicka H et al (2010) Over-expression of an FT-homologous gene of apple induces early flowering in annual and perennial plants. Planta 232:1309–1324PubMedCrossRefGoogle Scholar
  110. Vaccari I, Martinelli L (2009) Evaluation of the phosphomannose isomerase-based selection system for gene transfer in grape. Vitis 48:137–144Google Scholar
  111. Velasco R, Zharkikh A, Troggio M et al (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS ONE 2:e1326PubMedCrossRefGoogle Scholar
  112. Velasco R, Zharkikh A, Affourtit J et al (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42:833–839PubMedCrossRefGoogle Scholar
  113. Vidal JR, Gomez C, Cutanda MC et al (2010) Use of gene transfer technology for functional studies in grapevine. Aust J Grape Wine Res 16:138–151CrossRefGoogle Scholar
  114. Vigne E, Komar V, Fuchs M (2004) Field safety assessment of recombination in transgenic grapevines expressing the coat protein gene of Grapevine fanleaf virus. Transgenic Res 13:165–179PubMedCrossRefGoogle Scholar
  115. Welander M, Pawlicki N, Holefors A, Wilson F (1998) Genetic transformation of the apple rootstock M26 with the rolB gene and its influence on rooting. J Plant Physiol 153:371–380CrossRefGoogle Scholar
  116. Wen X-P, Pang X-M, Matsuda N et al (2008) Over-expression of the apple spermidine synthase gene in pear confers multiple abiotic stress tolerance by altering polyamine titers. Transgenic Res 17:251–263PubMedCrossRefGoogle Scholar
  117. Wen X-P, Ban Y, Inoue H et al (2010) Spermidine levels are implicated in heavy metal tolerance in a spermidine synthase overexpressing transgenic European pear by exerting antioxidant activities. Transgenic Res 19:91–103PubMedCrossRefGoogle Scholar
  118. Wen X-P, Ban Y, Inoue H et al (2011) Antisense inhibition of a spermidine synthase gene highlights the role of polyamines for stress alleviation in pear shoots subjected to salinity and cadmium. Environ Exp Bot 72:157–166CrossRefGoogle Scholar
  119. Wisniewski M, Norelli J, Bassett C et al (2011) Ectopic expression of a novel peach (Prunus persica) CBF transcription factor in apple (Malus × domestica) results in short-day induced dormancy and increased cold hardiness. Planta 233:971–983PubMedCrossRefGoogle Scholar
  120. Wong WS, Li GG, Ning W et al (2001) Repression of chilling-induced ACC accumulation in transgenic citrus by over-production of antisense 1-aminocyclopropane-1-carboxylate synthase RNA. Plant Sci 161:969–977CrossRefGoogle Scholar
  121. Yang L, Hu C, Li N et al (2011a) Transformation of sweet orange [Citrus sinensis (L.) Osbeck] with pthA-nls for acquiring resistance to citrus canker disease. Plant Mol Biol 75:11–23PubMedCrossRefGoogle Scholar
  122. Yang W, Liu X-D, Chi X-J et al (2011b) Dwarf apple MbDREB1 enhances plant tolerance to low temperature, drought, and salt stress via both ABA-dependent and ABA-independent pathways. Planta 233:219–229PubMedCrossRefGoogle Scholar
  123. Zhao Y, Liu QZ, Davis RE (2004) Transgene expression in strawberries driven by a heterologous phloem-specific promoter. Plant Cell Rep 23:224–230PubMedCrossRefGoogle Scholar
  124. Zhou R, Cheng L, Dandekar AM (2006) Down-regulation of sorbitol dehydrogenase and up-regulation of sucrose synthase in shoot tips of the transgenic apple trees with decreased sorbitol synthesis. J Exp Bot 57:3647–3657PubMedCrossRefGoogle Scholar
  125. Zhu LH, Holefors A, Ahlman A et al (2001) Transformation of the apple rootstock M.9/29 with the rolB gene and its influence on rooting and growth. Plant Sci 160:433–439PubMedCrossRefGoogle Scholar
  126. Zhu LH, Li XY, Welander M (2008) Overexpression of the Arabidopsis gai gene in apple significantly reduces plant size. Plant Cell Rep 27:289–296PubMedCrossRefGoogle Scholar
  127. Zok A, Oláh R, Hideg É et al (2010) Effect of Medicago sativa ferritin gene on stress tolerance in transgenic grapevine. Plant Cell Tiss Organ Cult 100:339–344Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Plant Virology Institute, National Research Council (IVV-CNR)UOS GrugliascoGrugliascoItaly

Personalised recommendations