Advertisement

Transgenic Research

, Volume 21, Issue 6, pp 1265–1277 | Cite as

Members of rice plasma membrane intrinsic proteins subfamily are involved in arsenite permeability and tolerance in plants

  • Kareem A. Mosa
  • Kundan Kumar
  • Sudesh Chhikara
  • Joseph Mcdermott
  • Zijuan Liu
  • Craig Musante
  • Jason C. White
  • Om Parkash Dhankher
Original Paper

Abstract

Rice accumulates high level of arsenic (As) in its edible parts and thus plays an important role in the transfer of As into the food chain. However, the mechanisms of As uptake and its detoxification in rice are not well understood. Recently, members of the Nodulin 26-like intrinsic protein (NIP) subfamily of plant aquaporins were shown to transport arsenite in rice and Arabidopsis. Here we report that members of the rice plasma membrane intrinsic protein (PIP) subfamily are also involved in As tolerance and transport. Based on the homology search with the mammalian AQP9 and yeast Fps1 arsenite transporters, we identified and cloned five rice PIP gene subfamily members. qRT-PCR analysis of PIPs in rice root and shoot tissues revealed a significant down regulation of transcripts encoding OsPIP1;2, OsPIP1;3, OsPIP2;4, OsPIP2;6, and OsPIP2;7 in response to arsenite treatment. Heterologous expression of OsPIP2;4, OsPIP2;6, and OsPIP2;7 in Xenopus laevis oocytes significantly increased the uptake of arsenite. Overexpression of OsPIP2;4, OsPIP2;6, and OsPIP2;7 in Arabidopsis yielded enhanced arsenite tolerance and higher biomass accumulation. Further, these transgenic plants showed no significant accumulation of As in shoot and root tissues in long term uptake assays. Whereas, short duration exposure to arsenite caused both active influx and efflux of As in the roots. The data suggests a bidirectional arsenite permeability of rice PIPs in plants. These rice PIPs genes will be highly useful for engineering important food and biofuel crops for enhanced crop productivity on contaminated soils without increasing the accumulation of toxic As in the biomass or edible tissues.

Keywords

Aquaporins Arsenite transport Rice Plasma membrane intrinsic proteins Arabidopsis Xenopus laevis 

Notes

Acknowledgment

This work was supported by a grant (#S18990000000001) from the Ministry of Higher Education and Scientific Research in Egypt through the Egyptian Cultural and Educational Bureau, Washington, DC to OPD and KAM (GM: 714) and partially by a grant (#GO12026, under Department of Energy prime agreement: DE-FG36-02 GO12026) from the consortium of Plant Biotech Research (CPBR) to OPD. Authors wish to thank Dr. Elsbeth Walker and Dr. M. K. Kandasamy for their critical reading of the manuscript and suggestions.

Supplementary material

11248_2012_9600_MOESM1_ESM.docx (16 kb)
Supplementary material 1 (DOCX 16 kb)
11248_2012_9600_MOESM2_ESM.pdf (517 kb)
Supplementary material 2 (PDF 516 kb)

References

  1. Abedin MJ, Cotter-Howells J, Meharg AA (2002a) Arsenic uptake and accumulation in rice (oryza sativa L.) irrigated with contaminated water. Plant Soil 240(2):311–319CrossRefGoogle Scholar
  2. Abedin MJ, Cresser MS, Meharg AA, Feldmann J, Cotter-Howells J (2002b) Arsenic accumulation and metabolism in rice (oryza sativa L.). Environ Sci Technol 36(5):962–968PubMedCrossRefGoogle Scholar
  3. Aharon R, Shahak Y, Wininger S, Bendov R, Kapulnik Y et al (2003) Overexpression of a plasma membrane aquaporin in transgenic tobacco improves plant vigor under favorable growth conditions but not under drought or salt stress. Plant Cell 15(2):439–447PubMedCrossRefGoogle Scholar
  4. Alexandersson E, Danielson JA, Rade J, Moparthi VK, Fontes M, Kjellbom P, Johanson U (2010) Transcriptional regulation of aquaporins in accessions of Arabidopsis in response to drought stress. Plant J 61(4):650–660PubMedCrossRefGoogle Scholar
  5. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402PubMedCrossRefGoogle Scholar
  6. Bechtold N, Pelletier G (1997) In planta Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration. Anonymous Arabidopsis Protocols, In, pp 259–266Google Scholar
  7. Bentley R, Chasteen TG (2002) Microbial methylation of metalloids: arsenic, antimony, and bismuth. Microbiol Mol Biol Rev 66(2):250–271PubMedCrossRefGoogle Scholar
  8. Bienert G, Thorsen M, Schussler M, Nilsson H, Wagner A et al (2008) A subgroup of plant aquaporins facilitate the bi-directional diffusion of as(OH)3 and sb(OH)3 across membranes. BMC Biol 6(1):26PubMedCrossRefGoogle Scholar
  9. Chaumont F, Moshelion M, Daniels MJ (2005) Regulation of plant aquaporin activity. Biol Cell 97(10):749–764PubMedCrossRefGoogle Scholar
  10. Dallagnol LJ, Rodrigues FÃ, Mielli MVB, Ma JF, Datnoff LE (2009) Defective active silicon uptake affects some components of rice resistance to brown spot. Phytopathology 99(1):116–121PubMedCrossRefGoogle Scholar
  11. Dhankher OP (2005) Arsenic metabolism in plants: an inside story. New Phytol 168(3):503–505PubMedCrossRefGoogle Scholar
  12. Dhankher OP, Li Y, Rosen BP, Shi J, Salt D et al (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and [gamma]-glutamylcysteine synthetase expression. Nat Biotech 20(11):1140–1145CrossRefGoogle Scholar
  13. Fageria NK (2007) Yield physiology of rice. J Plant Nutr 30(6):843–879CrossRefGoogle Scholar
  14. Fitzpatrick KL, Reid RJ (2009) The involvement of aquaglyceroporins in transport of boron in barley roots. Plant Cell Environ 32(10):1357–1365PubMedCrossRefGoogle Scholar
  15. Guo L, Wang ZY, Lin H, Cui WE, Chen J, Liu M, Chen ZL, Qu LJ, Gu H (2006) Expression and functional analysis of the rice plasma-membrane intrinsic protein gene family. Cell Res 16(3):277–286PubMedCrossRefGoogle Scholar
  16. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans (2004) Some drinking-water disinfectants and contaminants, including arsenic. monographs on chloramine, chloral and chloral hydrate, dichloroacetic acid, trichloroacetic acid and 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone. IARC Monogr Eval Carcinog Risks Hum 84:269–477Google Scholar
  17. Isayenkov SV, Maathuis FJM (2008) The Arabidopsis thaliana aquaglyceroporin AtNIP7;1 is a pathway for arsenite uptake. FEBS Lett 582(11):1625–1628PubMedCrossRefGoogle Scholar
  18. Jang JY, Kim DG, Kim YO, Kim JS, Kang H (2004) An expression analysis of a gene family encoding plasma membrane aquaporins in response to abiotic stresses in Arabidopsis thaliana. Plant Mol Biol 54(5):713–725PubMedCrossRefGoogle Scholar
  19. Jang JY, Lee SH, Rhee JY, Chung GC, Ahn SJ, Kang H (2007) Transgenic Arabidopsis and tobacco plants overexpressing an aquaporin respond differently to various abiotic stresses. Plant Mol Biol 64(6):621–632PubMedCrossRefGoogle Scholar
  20. Johanson U, Karlsson M, Johansson I, Gustavsson S, Sjovall S et al (2001) The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol 126(4):1358–1369PubMedCrossRefGoogle Scholar
  21. Johansson I, Karlsson M, Johanson U, Larsson C, Kjellbom P (2000) The role of aquaporins in cellular and whole plant water balance. Biochimica Et Biophysica Acta (BBA) (Biomembranes) 1465(1–2):324–342CrossRefGoogle Scholar
  22. Juhasz AL, Naidu R, Zhu YG, Wang LS, Jiang JY et al (2003) Toxicity issues associated with geogenic arsenic in the groundwater–soil–plant–human continuum. Bull Environ Contam Toxicol 71(6):1100–1107PubMedCrossRefGoogle Scholar
  23. Kamiya T, Tanaka M, Mitani N, Ma JF, Maeshima M et al (2009) NIP1;1, an aquaporin homolog, determines the arsenite sensitivity of Arabidopsis thaliana. J Biol Chem 284(4):2114–2120PubMedCrossRefGoogle Scholar
  24. Li GW, Zhang MH, Cai WM, Sun WN, Su WA (2008) Characterization of OsPIP2;7, a water channel protein in rice. Plant Cell Physiol 49(2):1851–1858PubMedCrossRefGoogle Scholar
  25. Li R, Ago Y, Liu W, Mitani N, Feldmann J et al (2009) The rice aquaporin Lsi1 mediates uptake of methylated arsenic species. Plant Physiol 150(4):2071–2080PubMedCrossRefGoogle Scholar
  26. Lian H, Yu X, Ye Q, Ding X, Kitagawa Y et al (2004) The role of aquaporin RWC3 in drought avoidance in rice. Plant Cell Physiol 45(4):481–489PubMedCrossRefGoogle Scholar
  27. Liu Z, Shen J, Carbrey JM, Mukhopadhyay R, Agre P et al (2002) Arsenite transport by mammalian aquaglyceroporins AQP7 and AQP9. Proc Natl Acad Sci USA 99(9):6053–6058PubMedCrossRefGoogle Scholar
  28. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method. Methods 25(4):402–408PubMedCrossRefGoogle Scholar
  29. Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11(8):392–397PubMedCrossRefGoogle Scholar
  30. Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S et al (2006) A silicon transporter in rice. Nature 440(7084):688–691PubMedCrossRefGoogle Scholar
  31. Ma JF, Yamaji N, Mitani N, Xu X, Su Y et al (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Natl Acad Sci USA 105(29):9931–9935PubMedCrossRefGoogle Scholar
  32. Meharg AA (2004) Arsenic in rice—understanding a new disaster for south-east Asia. Trends Plant Sci 9(9):415–417PubMedCrossRefGoogle Scholar
  33. Meharg AA, Macnair MR (1992) Suppression of the high affinity phosphate uptake system: a mechanism of arsenate tolerance in Holcus lanatus L. J Exp Bot 43(4):519–524CrossRefGoogle Scholar
  34. Meharg AA, Rahman MM (2003) Arsenic contamination of bangladesh paddy field soils: implications for rice contribution to arsenic consumption. Environ Sci Technol 37(2):229–234PubMedCrossRefGoogle Scholar
  35. Meharg AA, Williams PN, Adomako E, Lawgali YY, Deacon C et al (2009) Geographical variation in total and inorganic arsenic content of polished (white) rice. Environ Sci Technol 43(5):1612–1617PubMedCrossRefGoogle Scholar
  36. Meng Y, Liu Z, Rosen BP (2004) As(III) and sb(III) uptake by GlpF and efflux by ArsB in escherichia coli. J Biol Chem 279(18):18334–18341PubMedCrossRefGoogle Scholar
  37. Miwa K, Kamiya T, Fujiwara T (2009) Homeostasis of the structurally important micronutrients, B and si. Curr Opin Plant Biol 12(3):307–311PubMedCrossRefGoogle Scholar
  38. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plantarum 15(3):473–497CrossRefGoogle Scholar
  39. Ravenscroft P, Brammer H, Richards KS (2009) Arsenic pollution: a global synthesis. Wiley-Blackwell, UKCrossRefGoogle Scholar
  40. Rosen BP (2002) Biochemistry of arsenic detoxification. FEBS Lett 529(1):86–92PubMedCrossRefGoogle Scholar
  41. Sakurai J, Ishikawa F, Yamaguchi T, Uemura M, Maeshima M (2005) Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant Cell Physiol 46(9):1568–1577PubMedCrossRefGoogle Scholar
  42. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(24):4876–4882PubMedCrossRefGoogle Scholar
  43. Weig A, Deswarte C, Chrispeels MJ (1997) The major intrinsic protein family of arabidopsis has 23 members that form three distinct groups with functional aquaporins in each group. Plant Physiol 114(4):1347–1357PubMedCrossRefGoogle Scholar
  44. Williams PN, Villada A, Deacon C, Raab A, Figuerola J et al (2007) Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley. Environ Sci Technol 41(19):6854–6859PubMedCrossRefGoogle Scholar
  45. Wysocki R, Chéry CC, Wawrzycka D, Van Hulle M, Cornelis R et al (2001) The glycerol channel Fps1p mediates the uptake of arsenite and antimonite in saccharomyces cerevisiae. Mol Microbiol 40(6):1391–1401PubMedCrossRefGoogle Scholar
  46. Yu X, Peng YH, Zhang MH, Shao YJ, Su WA, Tang ZC (2006) Water relations and an expression analysis of plasma membrane intrinsic proteins in sensitive and tolerant rice during chilling and recovery. Cell Res 16(6):599–608PubMedCrossRefGoogle Scholar
  47. Zhao FJ, Ma JF, Meharg AA, McGrath SP (2009) Arsenic uptake and metabolism in plants. New Phytol 181(4):777–794PubMedCrossRefGoogle Scholar
  48. Zhao F, Ago Y, Mitani N, Li R, Su Y et al (2010a) The role of the rice aquaporin Lsi1 in arsenite efflux from roots. New Phytol 186(2):392–399PubMedCrossRefGoogle Scholar
  49. Zhao F, McGrath SP, Meharg AA (2010b) Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol 61(1):535–559PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Kareem A. Mosa
    • 1
    • 4
  • Kundan Kumar
    • 1
  • Sudesh Chhikara
    • 1
  • Joseph Mcdermott
    • 2
  • Zijuan Liu
    • 2
  • Craig Musante
    • 3
  • Jason C. White
    • 3
  • Om Parkash Dhankher
    • 1
  1. 1.Department of Plant, Soil and Insect SciencesUniversity of MassachusettsAmherstUSA
  2. 2.Department of Biological SciencesOakland UniversityRochesterUSA
  3. 3.Department of Analytical ChemistryThe Connecticut Agricultural Experiment StationNew HavenUSA
  4. 4.Department of Biotechnology, Faculty of AgricultureAl-Azhar UniversityCairoEgypt

Personalised recommendations