Transgenic Research

, Volume 21, Issue 4, pp 699–713 | Cite as

On the emerging role of rabbit as human disease model and the instrumental role of novel transgenic tools

  • V. Duranthon
  • N. Beaujean
  • M. Brunner
  • K. E. Odening
  • A. Navarrete Santos
  • I. Kacskovics
  • L. Hiripi
  • E. J. Weinstein
  • Z. Bosze
Perspective

Abstract

The laboratory rabbit (Oryctolagus cuniculus) is widely used as a model for human diseases, because of its size, which permits non-lethal monitoring of physiological changes and similar disease characteristics. Novel transgenic tools such as, the zinc finger nuclease method and the sleeping beauty transposon mediated or BAC transgenesis were recently adapted to the laboratory rabbit and opened new opportunities in precise tissue and developmental stage specific gene expression/silencing, coupled with increased transgenic efficiencies. Many facets of human development and diseases cannot be investigated in rodents. This is especially true for early prenatal development, its long-lasting effects on health and complex disorders, and some economically important diseases such as atherosclerosis or cardiovascular diseases. The first transgenic rabbits models of arrhythmogenesis mimic human cardiac diseases much better than transgenic mice and hereby underline the importance of non-mouse models. Another emerging field is epigenetic reprogramming and pathogenic mechanisms in diabetic pregnancy, where rabbit models are indispensable. Beyond that rabbit is used for decades as major source of polyclonal antibodies and recently in monoclonal antibody production. Alteration of its genome to increase the efficiency and value of the antibodies by humanization of the immunoglobulin genes, or by increasing the expression of a special receptor (Fc receptor) that augments humoral immune response is a current demand.

Keywords

Rabbit embryogenesis Maternal diabetes ZFN method Sleeping beauty transgenesis FcRn overexpression Cardiovascular disease model 

References

  1. Andrey P, Kieu K, Kress C, Lehmann G, Tirichine L, Liu Z, Biot E, Adenot PG, Hue-Beauvais C, Houba-Herin N, Duranthon V, Devinoy E, Beaujean N, Gaudin V, Maurin Y, Debey P (2010) Statistical analysis of 3D images detects regular spatial distributions of centromeres and chromocenters in animal and plant nuclei. PLoS Comput Biol 6(7):e1000853PubMedCrossRefGoogle Scholar
  2. Babij P, Askew GR, Nieuwenhuijsen B, Su CM, Bridal TR, Jow B, Argentieri TM, Kulik J, DeGennaro LJ, Spinelli W, Colatsky TJ (1998) Inhibition of cardiac delayed rectifier K + current by overexpression of the long-QT syndrome HERG G628S mutation in transgenic mice. Circ Res 83(6):668–678PubMedCrossRefGoogle Scholar
  3. Babinet C, Cohen-Tannoudji M (2001) Genome engineering via homologous recombination in mouse embryonic stem (ES) cells: an amazingly versatile tool for the study of mammalian biology. An Acad Bras Cienc 73(3):365–383PubMedCrossRefGoogle Scholar
  4. Beddington RS, Robertson EJ (1989) An assessment of the developmental potential of embryonic stem cells in the midgestation mouse embryo. Development 105(4):733–737PubMedGoogle Scholar
  5. Bellier S, Chastant S, Adenot P, Vincent M, Renard JP, Bensaude O (1997) Nuclear translocation and carboxyl-terminal domain phosphorylation of RNA polymerase II delineate the two phases of zygotic gene activation in mammalian embryos. EMBO J 16(20):6250–6262PubMedCrossRefGoogle Scholar
  6. Bentzen BH, Bahrke S, Wu K, Larsen AP, Odening KE, Franke G, vans Gravesande KS, Biermann J, Peng X, Koren G, Zehender M, Bode C, Grunnet M, Brunner M (2011) Pharmacological activation of Kv11.1 in transgenic long QT-1 rabbits. J Cardiovasc Pharmacol 57(2):223–230Google Scholar
  7. Berg DK, Smith CS, Pearton DJ, Wells DN, Broadhurst R, Donnison M, Pfeffer PL (2011) Trophectoderm lineage determination in cattle. Dev Cell 20(2):244–255PubMedCrossRefGoogle Scholar
  8. Bers DM (2002) Cardiac Na/Ca exchange function in rabbit, mouse and man: what’s the difference? J Mol Cell Cardiol 34(4):369–373PubMedCrossRefGoogle Scholar
  9. Bibikova M, Golic M, Golic KG, Carroll D (2002) Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161(3):1169–1175PubMedGoogle Scholar
  10. Biermann J, Wu K, Odening KE, Asbach S, Koren G, Peng X, Zehender M, Bode C, Brunner M (2011) Nicorandil normalizes prolonged repolarisation in the first transgenic rabbit model with Long-QT syndrome 1 both in vitro and in vivo. Eur J Pharmacol 650(1):309–316PubMedCrossRefGoogle Scholar
  11. Bosze Z, Houdebine LM (2006) Application of rabbits in biomedical research: a review. World Rabbit Sci 14:1–14Google Scholar
  12. Bosze Z, Hiripi L, Hoffmann O, Gócza E, Kvell K, Mates L, Izsvak Z (2011) Creation and characterization of second generation transgenic rabbit models. Transgenic Res. doi:10.1007/s11248-011-9570-2
  13. Bronson SK, Smithies O (1994) Altering mice by homologous recombination using embryonic stem cells. J Biol Chem 269(44):27155–27158PubMedGoogle Scholar
  14. Brunet-Simon A, Henrion G, Renard JP, Duranthon V (2001) Onset of zygotic transcription and maternal transcript legacy in the rabbit embryo. Mol Reprod Dev 58(2):127–136PubMedCrossRefGoogle Scholar
  15. Brunner M, Guo W, Mitchell GF, Buckett PD, Nerbonne JM, Koren G (2001) Characterization of mice with a combined suppression of I(to) and I(K, slow). Am J Physiol Heart Circ Physiol 281(3):H1201–1209PubMedGoogle Scholar
  16. Brunner M, Peng X, Liu GX, Ren XQ, Ziv O, Choi BR, Mathur R, Hajjiri M, Odening KE, Steinberg E, Folco EJ, Pringa E, Centracchio J, Macharzina RR, Donahay T, Schofield L, Rana N, Kirk M, Mitchell GF, Poppas A, Zehender M, Koren G (2008) Mechanisms of cardiac arrhythmias and sudden death in transgenic rabbits with long QT syndrome. J Clin Invest 118(6):2246–2259PubMedGoogle Scholar
  17. Carbery ID, Ji D, Harrington A, Brown V, Weinstein EJ, Liaw L, Cui X (2010) Targeted genome modification in mice using zinc-finger nucleases. Genetics 186(2):451–459PubMedCrossRefGoogle Scholar
  18. Casimiro MC, Knollmann BC, Ebert SN, Vary JC Jr, Greene AE, Franz MR, Grinberg A, Huang SP, Pfeifer K (2001) Targeted disruption of the Kcnq1 gene produces a mouse model of Jervell and Lange-Nielsen Syndrome. Proc Natl Acad Sci USA 98(5):2526–2531PubMedCrossRefGoogle Scholar
  19. Casson IF, Clarke CA, Howard CV, McKendrick O, Pennycook S, Pharoah PO, Platt MJ, Stanisstreet M, van Velszen D, Walkinshaw S (1997) Outcomes of pregnancy in insulin dependent diabetic women: results of a five year population cohort study. Bmj 315(7103):275–278PubMedCrossRefGoogle Scholar
  20. Catunda Lemos AP, Cervenak J, Bender B, Hoffmann OI, Baranyi M, Kerekes A, Farkas A, Bosze Z, Hiripi L, Kacskovics I (2012) Characterization of the rabbit neonatal Fc receptor (FcRn) and analyzing the immunophenotype of the transgenic rabbits that overexpresses FcRn. PloS one 7(1):e28869PubMedCrossRefGoogle Scholar
  21. Cervenak J, Bender B, Schneider Z, Magna M, Carstea BV, Liliom K, Erdei A, Bosze Z, Kacskovics I (2011) Neonatal FcR overexpression boosts humoral immune response in transgenic mice. J Immunol 186(2):959–968PubMedCrossRefGoogle Scholar
  22. Chang AS, Dale AN, Moley KH (2005) Maternal diabetes adversely affects preovulatory oocyte maturation, development, and granulosa cell apoptosis. Endocrinology 146(5):2445–2453PubMedCrossRefGoogle Scholar
  23. Chapman K, Pullen N, Coney L, Dempster M, Andrews L, Bajramovic J, Baldrick P, Buckley L, Jacobs A, Hale G, Green C, Ragan I, Robinson V (2009) Preclinical development of monoclonal antibodies: considerations for the use of non-human primates. MAbs 1(5):505–516PubMedCrossRefGoogle Scholar
  24. Chieri RA, Pivetta OH, Foglia VG (1969) Altered ovulation pattern in experimental diabetes. Fertil Steril 20(4):661–666PubMedGoogle Scholar
  25. Christians E, Rao VH, Renard JP (1994) Sequential acquisition of transcriptional control during early embryonic development in the rabbit. Dev Biol 164(1):160–172PubMedCrossRefGoogle Scholar
  26. Colton SA, Humpherson PG, Leese HJ, Downs SM (2003) Physiological changes in oocyte-cumulus cell complexes from diabetic mice that potentially influence meiotic regulation. Biol Reprod 69(3):761–770PubMedCrossRefGoogle Scholar
  27. Cui X, Ji D, Fisher DA, Wu Y, Briner DM, Weinstein EJ (2011) Targeted integration in rat and mouse embryos with zinc-finger nucleases. Nat Biotechnol 29(1):64–67PubMedCrossRefGoogle Scholar
  28. De Hertogh R, Vanderheyden I, Pampfer S, Robin D, Delcourt J (1992) Maternal insulin treatment improves pre-implantation embryo development in diabetic rats. Diabetologia 35(5):406–408PubMedCrossRefGoogle Scholar
  29. Demolombe S, Lande G, Charpentier F, van Roon MA, van den Hoff MJ, Toumaniantz G, Baro I, Guihard G, Le Berre N, Corbier A, de Bakker J, Opthof T, Wilde A, Moorman AF, Escande D (2001) Transgenic mice overexpressing human KvLQT1 dominant-negative isoform. Part I: Phenotypic characterisation. Cardiovasc Res 50(2):314–327PubMedCrossRefGoogle Scholar
  30. Diamond MP, Moley KH, Pellicer A, Vaughn WK, DeCherney AH (1989) Effects of streptozotocin- and alloxan-induced diabetes mellitus on mouse follicular and early embryo development. J Reprod Fertil 86(1):1–10PubMedCrossRefGoogle Scholar
  31. Doyon Y, McCammon JM, Miller JC, Faraji F, Ngo C, Katibah GE, Amora R, Hocking TD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Amacher SL (2008) Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol 26(6):702–708PubMedCrossRefGoogle Scholar
  32. Dupuy AJ, Fritz S, Largaespada DA (2001) Transposition and gene disruption in the male germline of the mouse. Genesis 30(2):82–88PubMedCrossRefGoogle Scholar
  33. Flisikowska T, Thorey IS, Offner S, Ros F, Lifke V, Zeitler B, Rottmann O, Vincent A, Zhang L, Jenkins S, Niersbach H, Kind AJ, Gregory PD, Schnieke AE, Platzer J (2011) Efficient immunoglobulin gene disruption and targeted replacement in rabbit using zinc finger nucleases. PloS one 6(6):e21045PubMedCrossRefGoogle Scholar
  34. Funaki K, Mikamo K (1983) Developmental-stage-dependent teratogenic effects of maternal spontaneous diabetes in the Chinese hamster. Diabetes 32(7):637–643PubMedCrossRefGoogle Scholar
  35. Garrels W, Mates L, Holler S, Dalda A, Taylor U, Petersen B, Niemann H, Izsvak Z, Ivics Z, Kues WA (2011) Germline transgenic pigs by sleeping beauty transposition in porcine zygotes and targeted integration in the pig genome. PloS one 6(8):e23573PubMedCrossRefGoogle Scholar
  36. Gendrel AV, Heard E (2011) Fifty years of X-inactivation research. Development 138(23):5049–5055PubMedCrossRefGoogle Scholar
  37. Geurts AM, Cost GJ, Freyvert Y, Zeitler B, Miller JC, Choi VM, Jenkins SS, Wood A, Cui X, Meng X, Vincent A, Lam S, Michalkiewicz M, Schilling R, Foeckler J, Kalloway S, Weiler H, Menoret S, Anegon I, Davis GD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Jacob HJ, Buelow R (2009) Knockout rats via embryo microinjection of zinc-finger nucleases. Science 325(5939):433PubMedCrossRefGoogle Scholar
  38. Guo W, Jung WE, Marionneau C, Aimond F, Xu H, Yamada KA, Schwarz TL, Demolombe S, Nerbonne JM (2005) Targeted deletion of Kv4.2 eliminates I(to, f) and results in electrical and molecular remodeling, with no evidence of ventricular hypertrophy or myocardial dysfunction. Circ Res 97(12):1342–1350PubMedCrossRefGoogle Scholar
  39. Guo Y, Zhang C-S, Li S-G, Li F, R-H G, Xong F-Y, Li Y, Chen X-J (2009) RNAi mediated stable silencing of HGPRT expression in rabbit fibroblasts and SCNT embryo production. Prog Biochem Biophys 36(7):872–879Google Scholar
  40. Henrion G, Brunet A, Renard JP, Duranthon V (1997) Identification of maternal transcripts that progressively disappear during the cleavage period of rabbit embryos. Mol Reprod Dev 47(4):353–362PubMedCrossRefGoogle Scholar
  41. Henrion G, Renard JP, Chesne P, Oudin JF, Maniey D, Brunet A, Osborne HB, Duranthon V (2000) Differential regulation of the translation and the stability of two maternal transcripts in preimplantation rabbit embryos. Mol Reprod Dev 56(1):12–25PubMedCrossRefGoogle Scholar
  42. Hiripi L, Negre D, Cosset FL, Kvell K, Czompoly T, Baranyi M, Gocza E, Hoffmann O, Bender B, Bosze Z (2010) Transgenic rabbit production with simian immunodeficiency virus-derived lentiviral vector. Transgenic Res 19(5):799–808PubMedCrossRefGoogle Scholar
  43. Ivics Z, Li MA, Mates L, Boeke JD, Nagy A, Bradley A, Izsvak Z (2009) Transposon-mediated genome manipulation in vertebrates. Nat Methods 6(6):415–422PubMedCrossRefGoogle Scholar
  44. Jones BW, Kondo M, Terasaki H, Watt CB, Rapp K, Anderson J, Lin Y, Shaw MV, Yang JH, Marc RE (2011) Retinal remodeling in the Tg P347L rabbit, a large-eye model of retinal degeneration. J Comp Neurol 519(14):2713–2733PubMedCrossRefGoogle Scholar
  45. Kacskovics I, Cervenak J, Erdei A, Goldsby RA, Butler JE (2011) Recent advances using FcRn overexpression in transgenic animals to overcome impediments of standard antibody technologies. mAbs 3(5):431–439PubMedCrossRefGoogle Scholar
  46. Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA 93(3):1156–1160PubMedCrossRefGoogle Scholar
  47. Kondo M, Sakai T, Komeima K, Kurimoto Y, Ueno S, Nishizawa Y, Usukura J, Fujikado T, Tano Y, Terasaki H (2009) Generation of a transgenic rabbit model of retinal degeneration. Invest Ophthalmol Vis Sci 50(3):1371–1377PubMedCrossRefGoogle Scholar
  48. Kotnik K, Popova E, Todiras M, Mori MA, Alenina N, Seibler J, Bader M (2009) Inducible transgenic rat model for diabetes mellitus based on shRNA-mediated gene knockdown. PloS one 4(4):e5124PubMedCrossRefGoogle Scholar
  49. Lea RG, McCracken JE, McIntyre SS, Smith W, Baird JD (1996) Disturbed development of the preimplantation embryo in the insulin-dependent diabetic BB/E rat. Diabetes 45(11):1463–1470PubMedCrossRefGoogle Scholar
  50. Leandri RD, Archilla C, Bui LC, Peynot N, Liu Z, Cabau C, Chastellier A, Renard JP, Duranthon V (2009) Revealing the dynamics of gene expression during embryonic genome activation and first differentiation in the rabbit embryo with a dedicated array screening. Physiol Genomics 36(2):98–113PubMedGoogle Scholar
  51. Lenzen S (2007) Alloxan and streptozotocin diabetes. Endokrinologie III(64):119–139Google Scholar
  52. Lieber MR (1999) The biochemistry and biological significance of nonhomologous DNA end joining: an essential repair process in multicellular eukaryotes. Genes Cells 4(2):77–85PubMedCrossRefGoogle Scholar
  53. Lillico S, Vasey D, King T, Whitelaw B (2011) Lentiviral transgenesis in livestock. Transgenic Res 20(3):441–442PubMedCrossRefGoogle Scholar
  54. London B, Jeron A, Zhou J, Buckett P, Han X, Mitchell GF, Koren G (1998) Long QT and ventricular arrhythmias in transgenic mice expressing the N terminus and first transmembrane segment of a voltage-gated potassium channel. Proc Natl Acad Sci USA 95(6):2926–2931PubMedCrossRefGoogle Scholar
  55. Manes C (1973) The participation of the embryonic genome during early cleavage in the rabbit. Dev Biol 32(2):453–459PubMedCrossRefGoogle Scholar
  56. Martin PL, Zhou Z, Van den Bulck K, Kwok D, Powers G, Jiao Q, Schantz A, Treacy G (2010) Pharmacology and placental transfer of a human alphav integrin monoclonal antibody in rabbits. Birth Defects Res B Dev Reprod Toxicol 89(2):116–123PubMedGoogle Scholar
  57. Mates L, Chuah MK, Belay E, Jerchow B, Manoj N, Acosta-Sanchez A, Grzela DP, Schmitt A, Becker K, Matrai J, Ma L, Samara-Kuko E, Gysemans C, Pryputniewicz D, Miskey C, Fletcher B, VandenDriessche T, Ivics Z, Izsvak Z (2009) Molecular evolution of a novel hyperactive sleeping beauty transposase enables robust stable gene transfer in vertebrates. Nat Genet 41(6):753–761PubMedCrossRefGoogle Scholar
  58. Moley KH (1999) Diabetes and preimplantation events of embryogenesis. Semin Reprod Endocrinol 17(2):137–151PubMedCrossRefGoogle Scholar
  59. Moley KH, Vaughn WK, DeCherney AH, Diamond MP (1991) Effect of diabetes mellitus on mouse pre-implantation embryo development. J Reprod Fertil 93(2):325–332PubMedCrossRefGoogle Scholar
  60. Muyrers JP, Zhang Y, Testa G, Stewart AF (1999) Rapid modification of bacterial artificial chromosomes by ET-recombination. Nucleic Acids Res 27(6):1555–1557PubMedCrossRefGoogle Scholar
  61. Navarrete Santos A, Tonack S, Kirstein M, Kietz S, Fischer B (2004a) Two insulin-responsive glucose transporter isoforms and the insulin receptor are developmentally expressed in rabbit preimplantation embryos. Reproduction 128(5):503–516PubMedCrossRefGoogle Scholar
  62. Navarrete Santos A, Tonack S, Kirstein M, Pantaleon M, Kaye P, Fischer B (2004b) Insulin acts via mitogen-activated protein kinase phosphorylation in rabbit blastocysts. Reproduction 128(5):517–526PubMedCrossRefGoogle Scholar
  63. Navarrete Santos A, Ramin N, Tonack S, Fischer B (2008) Cell lineage-specific signaling of insulin and insulin-like growth factor I in rabbit blastocysts. Endocrinology 149(2):515–524PubMedCrossRefGoogle Scholar
  64. Nerbonne JM (2000) Molecular basis of functional voltage-gated K + channel diversity in the mammalian myocardium. J Physiol 525(Pt 2):285–298PubMedCrossRefGoogle Scholar
  65. Odening KE, Hyder O, Chaves L, Schofield L, Brunner M, Kirk M, Zehender M, Peng X, Koren G (2008) Pharmacogenomics of anesthetic drugs in transgenic LQT1 and LQT2 rabbits reveal genotype-specific differential effects on cardiac repolarization. Am J Physiol Heart Circ Physiol 295(6):H2264–2272PubMedCrossRefGoogle Scholar
  66. Odening KE, Kirk M, Brunner M, Ziv O, Lorvidhaya P, Liu GX, Schofield L, Chaves L, Peng X, Zehender M, Choi BR, Koren G (2010) Electrophysiological studies of transgenic long QT type 1 and type 2 rabbits reveal genotype-specific differences in ventricular refractoriness and His conduction. Am J Physiol Heart Circ Physiol 299(3):H643–655PubMedCrossRefGoogle Scholar
  67. Odening KE, Choi BR, Liu GX, Hartmann K, Ziv O, Chaves L, Schofield L, Centracchio J, Zehender M, Peng X, Brunner M, Koren G (2012) Estradiol promotes sudden cardiac death in transgenic long-QT type 2 rabbits while progesterone is protective. Heart Rhythm. doi:10.1016/j.hrthm.2012.01.009
  68. Okamoto I, Patrat C, Thepot D, Peynot N, Fauque P, Daniel N, Diabangouaya P, Wolf JP, Renard JP, Duranthon V, Heard E (2011) Eutherian mammals use diverse strategies to initiate X-chromosome inactivation during development. Nature 472(7343):370–374PubMedCrossRefGoogle Scholar
  69. Pacheco-Trigon S, Hennequet-Antier C, Oudin JF, Piumi F, Renard JP, Duranthon V (2002) Molecular characterization of genomic activities at the onset of zygotic transcription in mammals. Biol Reprod 67(6):1907–1918PubMedCrossRefGoogle Scholar
  70. Pampfer S, Vanderheyden I, McCracken JE, Vesela J, De Hertogh R (1997) Increased cell death in rat blastocysts exposed to maternal diabetes in utero and to high glucose or tumor necrosis factor-alpha in vitro. Development 124(23):4827–4836PubMedGoogle Scholar
  71. Pardo B, Gomez-Gonzalez B, Aguilera A (2009) DNA repair in mammalian cells: DNA double-strand break repair: how to fix a broken relationship. Cell Mol Life Sci 66(6):1039–1056PubMedCrossRefGoogle Scholar
  72. Pattison JS, Waggoner JR, James J, Martin L, Gulick J, Osinska H, Klevitsky R, Kranias EG, Robbins J (2008) Phospholamban overexpression in transgenic rabbits. Transgenic Res 17(2):157–170PubMedCrossRefGoogle Scholar
  73. Penney GC, Mair G, Pearson DW (2003) Outcomes of pregnancies in women with type 1 diabetes in Scotland: a national population-based study. Bjog 110(3):315–318PubMedCrossRefGoogle Scholar
  74. Pentsuk N, van der Laan JW (2009) An interspecies comparison of placental antibody transfer: new insights into developmental toxicity testing of monoclonal antibodies. Birth Defects Res B Dev Reprod Toxicol 86(4):328–344PubMedCrossRefGoogle Scholar
  75. Picone O, Laigre P, Fortun-Lamothe L, Archilla C, Peynot N, Ponter AA, Berthelot V, Cordier AG, Duranthon V, Chavatte-Palmer P (2011) Hyperlipidic hypercholesterolemic diet in prepubertal rabbits affects gene expression in the embryo, restricts fetal growth and increases offspring susceptibility to obesity. Theriogenology 75(2):287–299PubMedCrossRefGoogle Scholar
  76. Porteus MH, Baltimore D (2003) Chimeric nucleases stimulate gene targeting in human cells. Science 300(5620):763PubMedCrossRefGoogle Scholar
  77. Ramin N, Thieme R, Fischer S, Schindler M, Schmidt T, Fischer B, Navarrete Santos A (2010) Maternal diabetes impairs gastrulation and insulin and IGF-I receptor expression in rabbit blastocysts. Endocrinology 151(9):4158–4167PubMedCrossRefGoogle Scholar
  78. Reis Silva AR, Adenot P, Daniel N, Archilla C, Peynot N, Lucci CM, Beaujean N, Duranthon V (2011) Dynamics of DNA methylation levels in maternal and paternal rabbit genomes after fertilization. Epigenetics 6(8):987–993PubMedCrossRefGoogle Scholar
  79. Reis Silva AR, Bruno C, Fleurot R, Daniel N, Archilla C, Peynot N, Lucci CM, Beaujean N (2012) Alteration of DNA demethylation dynamics by in vitro culture conditions in Rabbit Preimplantation Embryos. Epigenetics (in press)Google Scholar
  80. Ripplinger CM, Li W, Hadley J, Chen J, Rothenberg F, Lombardi R, Wickline SA, Marian AJ, Efimov IR (2007) Enhanced transmural fiber rotation and connexin 43 heterogeneity are associated with an increased upper limit of vulnerability in a transgenic rabbit model of human hypertrophic cardiomyopathy. Circ Res 101(10):1049–1057PubMedCrossRefGoogle Scholar
  81. Robertson E, Bradley A (1986) Production of permanent cell lines from early embryos and their use in studying developmental problems. In: Rossant J, Pederson R (eds) Experimental approaches to mammalian embryonic development. Cambridge University Press, Cambridge, pp 475–491Google Scholar
  82. Robertson E, Bradley A, Kuehn M, Evans M (1986) Germ-line transmission of genes introduced into cultured pluripotential cells by retroviral vector. Nature 323(6087):445–448PubMedCrossRefGoogle Scholar
  83. Roden DM (2008) Clinical practice. Long-QT syndrome. N Engl J Med 358(2):169–176PubMedCrossRefGoogle Scholar
  84. Salama G, London B (2007) Mouse models of long QT syndrome. J Physiol 578(Pt 1):43–53PubMedGoogle Scholar
  85. Sanbe A, James J, Tuzcu V, Nas S, Martin L, Gulick J, Osinska H, Sakthivel S, Klevitsky R, Ginsburg KS, Bers DM, Zinman B, Lakatta EG, Robbins J (2005) Transgenic rabbit model for human troponin I-based hypertrophic cardiomyopathy. Circulation 111(18):2330–2338PubMedCrossRefGoogle Scholar
  86. Santiago Y, Chan E, Liu PQ, Orlando S, Zhang L, Urnov FD, Holmes MC, Guschin D, Waite A, Miller JC, Rebar EJ, Gregory PD, Klug A, Collingwood TN (2008) Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases. Proc Natl Acad Sci USA 105(15):5809–5814PubMedCrossRefGoogle Scholar
  87. Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE, Mitchell JC, Arnold NL, Gopalan S, Meng X, Choi VM, Rock JM, Wu YY, Katibah GE, Zhifang G, McCaskill D, Simpson MA, Blakeslee B, Greenwalt SA, Butler HJ, Hinkley SJ, Zhang L, Rebar EJ, Gregory PD, Urnov FD (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459(7245):437–441PubMedCrossRefGoogle Scholar
  88. Sparwasser T, Gong S, Li JY, Eberl G (2004) General method for the modification of different BAC types and the rapid generation of BAC transgenic mice. Genesis 38(1):39–50PubMedCrossRefGoogle Scholar
  89. Thieme R, Ramin N, Fischer S, Puschel B, Fischer B, Navarrete Santos A (2011) Gastrulation in rabbit blastocysts depends on insulin and insulin-like-growth-factor 1. Mol Cell Endocrinol 348(1):112–119PubMedCrossRefGoogle Scholar
  90. Thomas KR, Capecchi MR (1987) Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51(3):503–512PubMedCrossRefGoogle Scholar
  91. Tong C, Huang G, Ashton C, Li P, Ying QL (2011) Generating gene knockout rats by homologous recombination in embryonic stem cells. Nat Protoc 6(6):827–844PubMedCrossRefGoogle Scholar
  92. Vegh A, Cervenak J, Jankovics I, Kacskovics I (2011) FcRn overexpression in mice results in potent humoral response against weakly immunogenic antigen. mAbs 3(2):173–180PubMedCrossRefGoogle Scholar
  93. Vercheval M, De Hertogh R, Pampfer S, Vanderheyden I, Michiels B, De Bernardi P, De Meyer R (1990) Experimental diabetes impairs rat embryo development during the preimplantation period. Diabetologia 33(4):187–191PubMedCrossRefGoogle Scholar
  94. Verheijen EC, Critchley JA, Whitelaw DC, Tuffnell DJ (2005) Outcomes of pregnancies in women with pre-existing type 1 or type 2 diabetes, in an ethnically mixed population. Bjog 112(11):1500–1503PubMedCrossRefGoogle Scholar
  95. Viebahn C, Mayer B, Hrabe de Angelis M (1995) Signs of the principle body axes prior to primitive streak formation in the rabbit embryo. Anat Embryol (Berl) 192(2):159–169CrossRefGoogle Scholar
  96. Yamashita A, Asada Y (2010) A rabbit model of thrombosis on atherosclerotic lesions. J Biomed Biotechnol 2011:424929PubMedGoogle Scholar
  97. Yang XW, Model P, Heintz N (1997) Homologous recombination based modification in Escherichia coli and germline transmission in transgenic mice of a bacterial artificial chromosome. Nat Biotechnol 15(9):859–865PubMedCrossRefGoogle Scholar
  98. Yang J, Cummings EA, O’Connell C, Jangaard K (2006) Fetal and neonatal outcomes of diabetic pregnancies. Obstet Gynecol 108(3 Pt 1):644–650PubMedCrossRefGoogle Scholar
  99. Yanga C-X, Liu Z, Fleurot R, Adenot P, Duranthon V, Vignon X, Zhou Q, Renard JP, Beaujean N (2012) Heterochromatin reprogramming in rabbit embryos after fertilization, intra- or inter-species SCNT affects preimplantation development (Submitted to Reproduction)Google Scholar
  100. Yusa K, Takeda J, Horie K (2004) Enhancement of sleeping beauty transposition by CpG methylation: possible role of heterochromatin formation. Mol Cell Biol 24(9):4004–4018PubMedCrossRefGoogle Scholar
  101. Zakhartchenko V, Flisikowska T, Li S, Richter T, Wieland H, Durkovic M, Rottmann O, Kessler B, Gungor T, Brem G, Kind A, Wolf E, Schnieke A (2010) Cell-mediated transgenesis in rabbits: chimeric and nuclear transfer animals. Biol Reprod 84(2):229–237PubMedCrossRefGoogle Scholar
  102. Ziv O, Morales E, Song YK, Peng X, Odening KE, Buxton AE, Karma A, Koren G, Choi BR (2009) Origin of complex behaviour of spatially discordant alternans in a transgenic rabbit model of type 2 long QT syndrome. J Physiol 587(Pt 19):4661–4680PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • V. Duranthon
    • 1
  • N. Beaujean
    • 1
  • M. Brunner
    • 2
  • K. E. Odening
    • 2
  • A. Navarrete Santos
    • 3
  • I. Kacskovics
    • 4
    • 5
  • L. Hiripi
    • 6
  • E. J. Weinstein
    • 7
  • Z. Bosze
    • 6
  1. 1.INRA, UMR 1198 Biologie du Développement et ReproductionJouy en JosasFrance
  2. 2.Innere Medizin IIIUniversitätsklinik FreiburgFreiburgGermany
  3. 3.Department of Anatomy and Cell Biology, Faculty of MedicineMartin Luther UniversityHalle (Saale)Germany
  4. 4.ImmunoGenes Ltd.BudakesziHungary
  5. 5.Department of ImmunologyEötvös Loránd UniversityBudapestHungary
  6. 6.Animal Biotechnology DepartmentAgricultural Biotechnology CenterGödöllőHungary
  7. 7.Sigma Advanced Genetic Engineering LabsSigma-Aldrich BiotechnologySt. LouisUSA

Personalised recommendations