Transgenic Research

, Volume 21, Issue 3, pp 485–498 | Cite as

A 3,387 bp 5′-flanking sequence of the goat alpha-S1-casein gene provides correct tissue-specific expression of human granulocyte colony-stimulating factor (hG-CSF) in the mammary gland of transgenic mice

  • Irina A. Serova
  • Gennady A. Dvoryanchikov
  • Ludmila E. Andreeva
  • Ivan A. Burkov
  • Luciene P. B. Dias
  • Nariman R. Battulin
  • Alexander V. Smirnov
  • Oleg L. Serov
Original Paper


A new expression vector containing the 1,944 bp 5′-flanking regulatory region together with exon 1 and intron 1 of the goat alpha-S1-casein gene (CSN1S1), the full-sized human granulocyte colony-stimulating factor gene (hGCSF) and the 3′-flanking sequence of the bovine CSN1S1, was created. The vector DNA was used for generation of four mouse transgenic lines. The transgene was integrated into chromosomes 8 and 12 of two founders as 2 and 5 copies, respectively. Tissue-specific secretion of hG-CSF into the milk of transgenic mice was in the range of 19–40 μg/ml. RT-PCR analysis of various tissues of the transgenic mice demonstrated that expression of hGCSF was detected in only the mammary gland in the progeny of all founders. Moreover, cells were shown to be positive for hG-CSF by immunofluorescent analysis in the mammary glands but not in any other tissues. There were no signs of mosaic expression in the mammary gland. Trace amounts of hG-CSF were detected in the serum of females of two transgenic lines during lactation only. However, no transgenic mice showed any changes in hematopoiesis based on the number of granulocytes in blood. Immunoblotting of hG-CSF in the milk of transgenic mice revealed two forms, presumably the glycosylated and non-glycosylated forms. The hematopoietic activity of hG-CSF in the milk of transgenic females is comparable to that of recombinant G-CSF. In general, the data obtained in this study show that the new expression vector is able to provide correct tissue-specific expression of hG-CSF with high biological activity in transgenic mice.


Promoter of alpha-S1-casein gene Tissue-specific expression Mammary gland Human granulocyte colony-stimulating factor Transgenic mice 



The authors express gratitude to Andrey Slobodskoy, Helen Lassunskaya (State Univeristy of North Fluminense, Campos, RJ, Brazil) for Western blotting, Nelly Khaidarova (Institute of Molecular Genetics, Academy of Sciences of Russia, Moscow, Russia), Hélio Menezes (Institute of Anatomy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil) for help in preparation recombinant DNA and determination of biological activity of hG-CSF.


  1. Andreeva LE, Serova IA (1992) Effect of micromanipulations used for transgenesis on the early development of mice. Ontogenez (Russian) 23:637–643Google Scholar
  2. Barash I, Faerman A, Ratovitsky T, Puzis R, Nathan M, Hurwitz DR, Shani M (1994) Ectopic expression of beta-lactoglobulin/human serum albumin fusion genes in transgenic mice: hormonal regulation and in situ localization. Transgenic Res 3:141–151PubMedCrossRefGoogle Scholar
  3. Bischoff R, Degryse E, Perraud F, Dalemans W, Ali-Hadji D, Thepot D, Devinoy E, Houdebine LM, Pavirani A (1992) A 17.6 kbp region located upstream of the rabbit WAP gene directs high level expression of a functional human protein variant in transgenic mouse milk. FEBS Lett 305:265–268PubMedCrossRefGoogle Scholar
  4. Broxmeyer HE, Douglas GW, Hangoc G, Cooper S, Bard J, English D, Arny M, Thomas L, Boyse EA (1989) Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells. Proc Natl Acad Sci USA 86:3828–3832PubMedCrossRefGoogle Scholar
  5. Devinoy E, Thepot D, Stinnakre M-G, Fontaine M-L, Grabowski H, Puissant C, Pavirani A, Houdebine L-M (1994) High level production of human growth hormone in the milk of transgenic mice: the upstream region of the rabbit whey acidic protein (WAP) gene targets transgene expression to the mammary gland. Transgenic Res 3:79–89PubMedCrossRefGoogle Scholar
  6. Devinoy E, Stinnakre MG, Lavialle F, Thepot D, Ollivier-Bousquet M (1995) Intracellular routing and release of caseins and growth hormone produced into milk from transgenic mice. Exp Cell Res 221:154–280CrossRefGoogle Scholar
  7. Dobie KW, Lee M, Fantes JA, Graham E, Clark AJ, Springbett A, Lathe R, McClenagham M (1996) Variegated transgene expression in mouse mammary gland is determined by the transgene integration locus. Proc Natl Acad Sci USA 93:6659–6664PubMedCrossRefGoogle Scholar
  8. Dvoryanchikov GA, Serova IA, Andreeva LE, Dias LPB, Azevedo S, Serov OL (2005) Secretion of biologically active human granulocyte colony-stimulating factor (G-CSF) in milk of transgenic mice. Russ J Genet 41:1088–1094CrossRefGoogle Scholar
  9. Elliott JI, Festenstein R, Tolaini M, Kioussis D (1995) Random activation of a transgene under the control of a hybrid hCD2 locus control region/Ig enhancer regulatory element. EMBO J 14:575–584PubMedGoogle Scholar
  10. Festenstein R, Tolaini M, Corbella P, Mamalaki C, Parrinton J, Fox M, Miliou A, Jones M, Kioussis D (1996) Locus control region function and heterochromatin-induced position effect variegation. Science 271:1123–1125PubMedCrossRefGoogle Scholar
  11. Frampton JE, Lee CR, Faulds D (1994) Filgrastim. A review of its pharmacological properties and therapeutic efficacy in neutropenia. Drugs 48:731–760PubMedCrossRefGoogle Scholar
  12. Freitas VJ, Serova IA, Andreeva LE, Dvoryanchikov GA, Lopes ES Jr, Teixeira DI, Dias LP, Avelar SR, Moura RR, Melo LM, Pereira AF, Cajazeiras JB, Andrade ML, Almeida KC, Sousa FC, Carvalho AC, Serov OL (2007) Production of transgenic goat (Capra hircus) with human granulocyte colony stimulating factor (hG-CSF) gene in Brazil. An Acad Bras Cienc 79:585–592PubMedCrossRefGoogle Scholar
  13. Freitas VJF, Teixeira DIA, Melo LM, Lopes ES Jr, Moura RR, Pereira AF, Sousa FC, Almeida KC, Avelar SRG, Cajazeiras JB, Dias LPB, Dvoryanchikov GA, Andreeva LE, Serova IA, Serov OL (2010) Generation of transgenic naturalized goats producing human granulocyte-colony stimulating factor (hG-CSF) in Brazil abstracts of VII transgenic animal research conference (Tahoe City, CA). Transgenic Res 19:146Google Scholar
  14. Goldman IL, Kadulin SG, Razin SV (2002) Transgenic goats in the world’s pharmaceutical industry in the XXI century. Russ J Genet 38:1–14CrossRefGoogle Scholar
  15. Graubert TA, Hug BA, Wesselschmidt R, Hsieh CL, Ryan TM, Townes TM, Ley TJ (1998) Stochastic, stage-specific mechanisms account for the variegation of a human globin transgene. Nucleic Acids Res 26:2849–2858PubMedCrossRefGoogle Scholar
  16. Grosveld F, Kollias G (1992) Transgenic animals. Academic Press, LondonGoogle Scholar
  17. Houdebine LM (2007) Transgenic animal models in biomedical research. Methods Mol Biol 360:163–202PubMedGoogle Scholar
  18. Houdebine LM (2009) Production of pharmaceutical proteins by transgenic animals. Comp Immunol Microbiol Infect Dis 32:107–121PubMedCrossRefGoogle Scholar
  19. Kanazawa T, Kohmoto K (2002) Immunochemical demonstration of alpha(s1)- and beta-casein in mouse mammary glands at early stages of pregnancy. J Histochem Cytochem 50:257–264PubMedCrossRefGoogle Scholar
  20. Ko JH, Lee CS, Kim KH, Pang MG, Koo JS, Fang F, Koo DB, Oh KB, Youn WS, Zheng GD, Park JS, Kim SJ, Han YM, Choi IY, Lim J, Shin ST, Jin SW, Lee KK, Yoo OJ (2000) Production of biologically active human granulocyte colony stimulating factor in the milk of transgenic goats. Transgenic Res 9:215–222PubMedCrossRefGoogle Scholar
  21. Koczan D, Hobom G, Seyfert HM (1991) Genomic organization of the bovine alpha-S1 casein gene. Nucleic Acids Res 19:5591–5596PubMedCrossRefGoogle Scholar
  22. Kubota N, Orita T, Hattori K, Oh-eda M, Ochi N, Yamazaki T (1990) Structural characterization of natural and recombinant human granulocyte colony-stimulating factors. J Biochem 107:486–492PubMedGoogle Scholar
  23. Liu Y-G, Chen Y (2007) High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences. Biotechniques 43:649–656PubMedCrossRefGoogle Scholar
  24. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408PubMedCrossRefGoogle Scholar
  25. Lubon H (1998) Transgenic animal bioreactors in biotechnology and production of blood proteins. Biotechnol Annu Rev 4:1–54PubMedCrossRefGoogle Scholar
  26. Maga EA, Murray JD (1995) Mammary gland expression of transgenes and the potential for altering the properties of milk. Biotechnology (NY) 13:1452–1457CrossRefGoogle Scholar
  27. Meade H, Gates L, Lacy E, Lonberg N (1990) Bovine alpha S1-casein gene sequences direct high level expression of active human urokinase in mouse milk. Biotechnology 8:443–446PubMedCrossRefGoogle Scholar
  28. Milot E, Strouboulis J, Trimborn T, Wijgerde M, De Boer E, Langeveld A, Tan-Un K, Vergeer W, Yannoutsos N, Grosveld F, Fraser P (1996) Heterochromatin effects on the frequency and duration of LCR-mediated gene transcription. Cell 87:105–114PubMedCrossRefGoogle Scholar
  29. Morley SD, O’Donohoe EA, Hughes KE, Irving C, Willis SM, Heasman S, West JD (2002) Mosaic patch patterns in chimeric and transgenic mice suggest that directional growth in the adrenal cortex begins in the perinatal period. Endocr Res 28:657–662PubMedCrossRefGoogle Scholar
  30. Moura RR, Lopes-Junior ES, Teixeira DIA, Serova IA, Andreeva LE, Melo LM, Freitas VJF (2010) Pronuclear embryo yield in Canindé and Saanen goats for DNA microinjection. Reprod Domest Anim 45:101–106Google Scholar
  31. Naruse K, Yoo SK, Kim SM, Choi YJ, Lee HM, Jin DI (2006) Analysis of tissue-specific expression of human type II collagen cDNA driven by different sizes of the upstream region of the beta-casein promoter. Biosci Biotechnol Biochem 70:93–98PubMedCrossRefGoogle Scholar
  32. Niemann H, Kues WA (2007) Transgenic farm animals: an update. Reprod Fertil Dev 19:762–770PubMedCrossRefGoogle Scholar
  33. Platenburg GJ, Kootwijk EP, Kooiman PM, Woloshuk SL, Nuijens JH, Krimpenfort PJ, Pieper FR, de Boer HA, Strijker R (1994) Expression of human lactoferrin in milk of transgenic mice. Transgenic Res 3:99–108PubMedCrossRefGoogle Scholar
  34. Popov LS (1996) Problems in the study of structure and expression of milk protein genes. Mol Biol (Mosk) 30:1242–1260Google Scholar
  35. Porter SD, Meyer CJ (1994) A distal tyrosinase upstream element stimulates gene expression in neural-crest-derived melanocytes of transgenic mice: position-independent and mosaic expression. Development 120:2103–2111PubMedGoogle Scholar
  36. Ramírez A, Milot E, Ponsa I, Marcos-Gutiérrez C, Page A, Santos M, Jorcano J, Vidal M (2001) Sequence and chromosomal context effects on variegated expression of keratin 5/lacZ constructs in stratified epithelia of transgenic mice. Genetics 158:341–350PubMedGoogle Scholar
  37. Ramunno L, Cosenza G, Rando A, Illario R, Gallo D, Di Berardino D, Masina P (2004) The goat αs1-casein gene: gene structure and promoter analysis. Gene 334:105–111PubMedCrossRefGoogle Scholar
  38. Rival-Gervier S, Viglietta C, Maeder C, Attal J, Houdebine LM (2002) Position-independent and tissue-specific expression of porcine whey acidic protein gene from a bacterial artificial chromosome in transgenic mice. Mol Reprod Dev 63:161–167PubMedCrossRefGoogle Scholar
  39. Roberts B, DiTullio P, Vitale J, Hehir K, Gordon K (1992) Cloning of the goat beta-casein-encoding gene and expression in transgenic mice. Gene 121:255–262PubMedCrossRefGoogle Scholar
  40. Rudolph NS (1999) Biopharmaceutical production in transgenic livestock. Trends Biotechnol 17:367–374PubMedCrossRefGoogle Scholar
  41. Sekkali B, Tran HT, Crabbe E, De Beule C, Van Roy F, Vleminckx K (2008) Chicken beta-globin insulator overcomes variegation of transgenes in Xenopus embryos. FASEB J 22:2534–2540PubMedCrossRefGoogle Scholar
  42. Uusi-Oukari M, Hyttinen J-M, Korhonen V-P, Vasti A, Alhonen L, Janne OA, Janne J (1997) Bovine αS1-casein gene sequences direct high-level expression of human granulocyte-macrophage colony-stimulating factor in the milk of transgenic mice. Transgenic Res 6:75–84PubMedCrossRefGoogle Scholar
  43. Wall RJ, Kerr DE, Bondioli KR (1997) Transgenic dairy cattle: genetic engineering on a large scale. J Dairy Sci 80:2213–2224PubMedCrossRefGoogle Scholar
  44. Yamada T, Kaneko H, Iizuka K, Matsubayashi Y, Kokai Y, Fujimoto J (1996) Elevation of lymphocyte and hematopoietic stem cell numbers in mice transgenic for human granulocyte CSF. Lab Invest 74:384–394PubMedGoogle Scholar
  45. Yen CH, Yang CK, Chen IC, Lin YS, Lin CS, Chu S, Tu CF (2008) Expression of recombinant Hirudin in transgenic mice milk driven by the goat beta-casein promoter. Biotechnol J 3:1067–1077PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Irina A. Serova
    • 1
  • Gennady A. Dvoryanchikov
    • 2
  • Ludmila E. Andreeva
    • 3
  • Ivan A. Burkov
    • 1
  • Luciene P. B. Dias
    • 4
  • Nariman R. Battulin
    • 1
  • Alexander V. Smirnov
    • 1
  • Oleg L. Serov
    • 1
  1. 1.Department of Developmental Genetics, Institute of Cytology and Genetics, Siberian BranchAcademy of Sciences of RussiaNovosibirskRussia
  2. 2.Department of Physiology and BiophysicsUniversity of Miami School of MedicineMiamiUSA
  3. 3.Institute of Molecular GeneticsAcademy of Sciences of RussiaMoscowRussia
  4. 4.Institute of Biophysics, Carlos Chagas FilhoFederal University of Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations