Transgenic Research

, Volume 20, Issue 3, pp 547–556 | Cite as

Dau c 1.01 and Dau c 1.02-silenced transgenic carrot plants show reduced allergenicity to patients with carrot allergy

  • Susanna Peters
  • Jafargholi Imani
  • Vera Mahler
  • Kay Foetisch
  • Susanne Kaul
  • Kathrin E. Paulus
  • Stephan Scheurer
  • Stefan Vieths
  • Karl-Heinz KogelEmail author
Original Paper


Pathogenesis-related protein-10 (PR10) is a ubiquitous small plant protein induced by microbial pathogens and abiotic stress that adversely contributes to the allergenic potency of many fruits and vegetables, including carrot. In this plant, two highly similar genes encoding PR10 isoforms have been isolated and designated as allergen Dau c 1.01 and Dau c 1.02. The aim of the study was to generate PR10-reduced hypoallergenic carrots by silencing either one of these genes in transgenic carrots by means of RNA interference (RNAi). The efficiency of gene silencing by stably expressed hairpin RNA (hnRNA) was documented by means of quantitative RT-PCR (qPCR) and immunoblotting. Quantification of the residual protein revealed that PR10 accumulation was strongly decreased compared with untransformed controls. Treatment of carrot plants with the PR protein-inducing chemical salicylic acid resulted in an increase of PR10 isoforms only in wild-type but not in Dau c 1-silenced mutants. The decrease of the allergenic potential in Dau c 1-silenced plants was sufficient to cause a reduced allergenic reactivity in patients with carrot allergy, as determined with skin prick tests (SPT). However, simultaneous silencing of multiple allergens will be required to design hypoallergenic carrots for the market. Our findings demonstrate the feasibility of creating low-allergenic food by using RNAi. This constitutes a reasonable approach to allergen avoidance.


Dau c 1 RNA interference Carrot allergy Food allergy Skin prick test Hypoallergenic food 

Abbreviations used


Quantitative RT-PCR




RNA interference


Skin prick test





We thank Dr. Jonas Lidholm and Asa Marknell DeWitt (Phadia AB, Uppsala Sweden) for providing the experimental ImmunoCAPs. The work was supported by grants Ko 1208/18-1, Mahler Ma 1997/3-1, So 300/13-1 and Vi 165/6-1 from the German Research Foundation (DFG).

Supplementary material

11248_2010_9435_MOESM1_ESM.ppt (388 kb)
PPT 386 kb


  1. Ballmer-Weber BK, Wüthrich B, Wangorsch A, Fötisch K, Altmann F, Vieths S (2001) Carrot allergy: double-blinded, placebo-controlled food challenge and identification of allergens. J Allergy Clin Immunol 108:301–307PubMedCrossRefGoogle Scholar
  2. Ballmer-Weber BK, Wangorsch A, Bohlen B, Kaul S, Kündig T, Fötisch K, van Ree R, Vieths S (2005) Component-resolved in vitro diagnosis in carrot allergy: does the use of recombinant carrot allergens improve the reliability of the diagnostic procedure? Clin Exp Allergy 35:970–978PubMedCrossRefGoogle Scholar
  3. Bohle B, Radakovics A, Lüttkopf D, Jahn-Schmid B, Vieths S, Ebner C (2005) Characterization of the T cell response to the major hazelnut allergen, Cor a 1.04: evidence for a relevant T cell epitope not cross-reactive with homologous pollen allergens. Clin Exp Allergy 35:1392–1399PubMedCrossRefGoogle Scholar
  4. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  5. Chen ZY, Brown RL, Damann KE, Cleveland TE (2010) PR10 expression in maize and its effect on host resistance against Aspergillus flavus infection and aflatoxin production. Molec Plant Pathol 11:69–81CrossRefGoogle Scholar
  6. Christensen AB, Cho BH, Næsby M, Gregersen PL, Brandt J, Madriz-Ordeñana K, Collinge D, Thordal-Christensen H (2002) The molecular characterization of two barley proteins establishes the novel PR-17 family of pathogenesis-related proteins. Molec Plant Pathol 3:135–144CrossRefGoogle Scholar
  7. Colditz F, Niehaus K, Krajinski F (2007) Silencing of PR-10-like proteins in Medicago truncatula results in an antagonistic induction of other PR proteins and in an increased tolerance upon infection with the oomycete Aphanomyces euteiches. Planta 226:57–71PubMedCrossRefGoogle Scholar
  8. Dreborg S (1989) EAACI: skin test for diagnosis of IgE-mediated allergy. Allergy 44(Suppl 10):31–37Google Scholar
  9. Gamborg OL, Miller RA, Ojimai K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158PubMedCrossRefGoogle Scholar
  10. Gilissen LJWJ, Bolhaar STHP, Matos CI, Rouwendal GJA, Boone MJ, Krens FA, Zuidmeer L, van Leeuwen A, Akkerdaas J, Hoffmann-Sommergruber K, Knulst AC, Bosch DW, van de Weg E, van Ree R, Gilissen LJW (2005) Silencing the major apple allergen Mal d 1 by using the RNA interference approach. J Allergy Clin Immunol 115:364–369PubMedCrossRefGoogle Scholar
  11. Herman EM (2003) Genetic modification removes an immunodominant allergen from soybean. Plant Physiol 132:36–43PubMedCrossRefGoogle Scholar
  12. Hoffmann-Sommergruber K, O′Riordain G, Ahorn H, Ebner C, Laimer da Camara Machando M, Pühringer H, Scheiner O, Breiteneder H (1999) Molecular characterization of Dau c 1, the Bet v 1 homologous protein from carrot and its cross-reactivity with Bet v 1 and Api g 1. Clin Exp Allergy 29:840–847PubMedCrossRefGoogle Scholar
  13. Hompes S, Scherer K, Köhli A, Rueff F, Mahler V, Lange L, Treudler R, Rietschel E, Szepfalusi Z, Lang R, Rabe U, Reese T, Beyer K, Schwerk N, Worm M (2010) Nahrungsmittel-Anaphylaxie: Daten aus dem Anaphylaxie-Register. Allergo J (in press)Google Scholar
  14. Imani J, Berting A, Nitsche S, Schäfer S, Gerlich WH, Neumann KH (2002) The integration of a major hepatitis B virus gene into cell-cycle synchronized carrot cell suspension cultures and its expression in regenerated carrot plants. Plant Cell Tiss Org Cult 71:157–164CrossRefGoogle Scholar
  15. Jahn-Schmid B, Radakovics A, Lüttkopf D, Scheurer S, Vieths S, Ebner C, Bohle B (2005) Bet v1142–156 is the dominant T-cell epitope of the major birch pollen allergen and important for cross-reactivity with Bet v 1–related food Allergens. J Allergy Clin Immunol 116:213–219PubMedCrossRefGoogle Scholar
  16. Karamloo F, Wangorsch A, Kasahara H (2001) Phenylcoumaran benzylic ether and isoflavonoid reductases are a new class of cross-reactive allergens in birch pollen, fruits and vegetables. Eur J Biochem 268:5310–5320PubMedCrossRefGoogle Scholar
  17. Karimi M, Inze D, Depicker A (2002) GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7:193–195PubMedCrossRefGoogle Scholar
  18. Kogel KH, Langen G (2005) Induced disease resistance and gene expression in cereals. Cell Microbiol 7:1555–1564PubMedCrossRefGoogle Scholar
  19. Lazo GR, Stein PA, Ludwig RA (1991) A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Nat Biotechnol 9:963–967CrossRefGoogle Scholar
  20. Le LQ, Lorenz Y, Scheurer S, Foetisch K, Enrique E, Bartra J, Biemelt S, Vieths S, Sonnewald U (2006) Design of tomato fruits with reduced allergenicity by ds-RNAi mediated inhibition of ns-LTP (Lyc e 3) expression. J Plant Biotechnol 4:231–242CrossRefGoogle Scholar
  21. Liu JJ, Ekramoddoullah AKM (2006) The family 10 of plant pathogenesis-related proteins: their structure, regulation, and function in response to biotic and abiotic stresses. Physiol Mol Plant Pathol 68:3–13CrossRefGoogle Scholar
  22. Marknell DeWitt A, Niederberger V, Lehtonen P, Spitzauer S, Sperr WR, Valent P, Valenta R, Lidholm J (2002) Molecular and immunological characterization of a novel timothy grass (Phleum pratense) pollen allergen, Phl p 11. Clin Exp Allergy 32:1329–1340PubMedCrossRefGoogle Scholar
  23. Nakamura R, Matsuda T (1996) Rice allergenic protein and molecular-genetic approach for hypoallergenic rice. Biosci Biotechnol Biochem 60:1215–1221PubMedCrossRefGoogle Scholar
  24. Ossowski S, Schwab R, Weigel D (2008) Gene silencing in plants using artificial MicroRNAs and other small RNAs. Plant J 53:674–690PubMedCrossRefGoogle Scholar
  25. Tada Y (1996) Reduction of 14–16 kDa allergenic proteins in transgenic rice plants by antisense gene. FEBS Lett 391:341–345PubMedCrossRefGoogle Scholar
  26. van Loon LC, Pieterse CM (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162PubMedCrossRefGoogle Scholar
  27. Vieths S, Scheurer S, Ballmer-Weber B (2002) Current understanding of cross-reactivity of food allergens and pollen. In: Genetically engineered foods: assessing potential allergenicity. Ann N Y Acad Sci 964, pp 47–68Google Scholar
  28. Xie YR, Chen ZY, Brown RL, Bhatnagar D (2010) Expression and functional characterization of two pathogenesis-related protein10 genes from Zea mays. J Plant Physiol 167:121–130PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Susanna Peters
    • 1
  • Jafargholi Imani
    • 1
  • Vera Mahler
    • 2
  • Kay Foetisch
    • 3
  • Susanne Kaul
    • 3
  • Kathrin E. Paulus
    • 4
  • Stephan Scheurer
    • 3
  • Stefan Vieths
    • 3
  • Karl-Heinz Kogel
    • 1
    Email author
  1. 1.Research Centre for BioSystems, Land Use and NutritionJustus Liebig UniversityGiessenGermany
  2. 2.Department of DermatologyUniversity Hospital Erlangen, Friedrich-Alexander UniversityErlangen-NurembergGermany
  3. 3.Division AllergologyPaul-Ehrlich-InstitutLangenGermany
  4. 4.Department of BiologyFriedrich-Alexander UniversityErlangen-NurembergGermany

Personalised recommendations