Transgenic Research

, Volume 20, Issue 3, pp 481–489 | Cite as

Genetic polymorphisms among C57BL/6 mouse inbred strains

  • Esther Zurita
  • Mónica Chagoyen
  • Marta Cantero
  • Rosario Alonso
  • Anna González-Neira
  • Alejandro López-Jiménez
  • José Antonio López-Moreno
  • Carlisle P. Landel
  • Javier Benítez
  • Florencio Pazos
  • Lluís Montoliu
Original Paper

Abstract

Mice from the inbred C57BL/6 strain have been commonly used for the generation and analysis of transgenic and knockout animal models. However, several C57BL/6 substrains exist, and these are genetically and phenotypically different. In addition, each of these substrains can be purchased from different animal providers and, in some cases, they have maintained their breeding stocks separated for a long time, allowing genetic differences to accumulate due to individual variability and genetic drift. With the aim of describing the differences in the genotype of several C57BL/6 substrains, we applied the Illumina® Mouse Medium Density Linkage Mapping panel, with 1,449 single nucleotide polymorphisms (SNPs), to individuals from ten C57BL/6-related strains: C57BL/6JArc, C57BL/6J from The Jackson Lab, C57BL/6J from Crl, C57BL6/JRccHsd, C57BL/6JOlaHsd, C57BL/6JBomTac, B6(Cg)-Tyrc2j/J, C57BL/6NCrl, C57BL/6NHsd and C57BL/6NTac. Twelve SNPs were found informative to discriminate among the mouse strains considered. Mice derived from the original C57BL/6J: C57BL/6JArc, C57BL/6J from The Jackson Lab and C57BL/6J from Crl, were indistinguishable. Similarly, all C57BL/6N substrains displayed the same genotype, whereas the additional substrains showed intermediate cases with substrain-specific polymorphisms. These results will be instrumental for the correct genetic monitoring and appropriate mouse colony handling of different transgenic and knockout mice produced in distinct C57BL/6 inbred substrains.

Keywords

Genetic background Phenotype Genotype Behaviour Transgenic mice Knockout mice Embryonic stem cells SNP 

References

  1. Al-Hasani K, Vadolas J, Voullaire L, Williamson R, Ioannou PA (2004) Complementation of alpha-thalassaemia in alpha-globin knockout mice with a 191 kb transgene containing the human alpha-globin locus. Transgenic Res 13:235–243PubMedCrossRefGoogle Scholar
  2. Bothe GW, Bolivar VJ, Vedder MJ, Geistfeld JG (2004) Genetic and behaviorial differences among five inbred mouse strains commonly used in the production of transgenic and knockout mice. Genes Brain Behav 3:149–157PubMedCrossRefGoogle Scholar
  3. Bryant CD, Zhang NN, Sokoloff G, Fanselow MS, Ennes HS, Palmer AA, McRoberts JA (2008) Behavioral differences among C57BL/6 substrains: implications for transgenic and knockout studies. J Neurogenet 22:315–331PubMedCrossRefGoogle Scholar
  4. Festing M (1996) Origins and characteristics of inbred strains of mice. In: Lyon M, Rastan S, Brown S (eds) Genetic variants and strains of the laboratory mouse, 3rd edn. Oxford University Press, Oxford, pp 1537–1576Google Scholar
  5. Freeman HC, Hugill A, Dear NT, Ashcroft FM, Cox RD (2006) Deletion of nicotinamide nucleotide transhydrogenase: a new quantitative trait locus accounting for glucose intolerance in C57BL/6J mice. Diabetes 55:2153–2156PubMedCrossRefGoogle Scholar
  6. Mekada K, Abe K, Murakami A, Nakamura S, Nakata H, Moriwaki K, Obata Y, Yoshiki A (2009) Genetic differences among C57BL/6 substrains. Exp Anim 58:141–149PubMedCrossRefGoogle Scholar
  7. Mulligan MK, Ponomarev I, Boehm SL 2nd, Owen JA, Levin PS, Berman AE, Blednov YA, Crabbe JC, Williams RW, Miles MF, Bergeson SE (2008) Alcohol trait and transcriptional genomic analysis of C57BL/6 substrains. Genes Brain Behav 7:677–689PubMedCrossRefGoogle Scholar
  8. Pettitt SJ, Liang Q, Rairdan XY, Moran JL, Prosser HM, Beier DR, Lloyd KC, Bradley A, Skarnes WC (2009) Agouti C57BL/6N embryonic stem cells for mouse genetic resources. Nat Methods 6:493–495PubMedCrossRefGoogle Scholar
  9. Specht CG, Schoepfer R (2001) Deletion of the alpha-synuclein locus in a subpopulation of C57BL/6J inbred mice. BMC Neurosci 2:11PubMedCrossRefGoogle Scholar
  10. Tang H, Araki K, Li Z, Yamamura K (2008) Characterization of Ayu17–449 gene expression and resultant kidney pathology in a knockout mouse model. Transgenic Res 17:599–608PubMedCrossRefGoogle Scholar
  11. Waterston RH, Mouse Genome Sequencing Consortium et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Esther Zurita
    • 1
    • 2
  • Mónica Chagoyen
    • 3
  • Marta Cantero
    • 1
    • 2
  • Rosario Alonso
    • 4
  • Anna González-Neira
    • 4
  • Alejandro López-Jiménez
    • 6
  • José Antonio López-Moreno
    • 6
  • Carlisle P. Landel
    • 7
  • Javier Benítez
    • 2
    • 4
    • 5
  • Florencio Pazos
    • 3
  • Lluís Montoliu
    • 1
    • 2
  1. 1.Department of Molecular and Cellular BiologyCentro Nacional de Biotecnología (CNB-CSIC)MadridSpain
  2. 2.Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIIIMadridSpain
  3. 3.Systems Biology ProgramCentro Nacional de Biotecnología (CNB-CSIC)MadridSpain
  4. 4.Human Genotyping-CEGEN UnitSpanish National Cancer Research Centre (CNIO)MadridSpain
  5. 5.Human Genetics GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
  6. 6.Department of Psychobiology, Faculty of PsychologyComplutense University of MadridMadridSpain
  7. 7.Department of Microbiology and Immunology, and Transgenic and Gene Targeting Facility, Kimmel Cancer CenterThomas Jefferson UniversityPhiladelphiaUSA

Personalised recommendations