Transgenic Research

, Volume 19, Issue 5, pp 745–763

New lines of GFP transgenic rats relevant for regenerative medicine and gene therapy

  • S. Remy
  • L. Tesson
  • C. Usal
  • S. Menoret
  • V. Bonnamain
  • V. Nerriere-Daguin
  • J. Rossignol
  • C. Boyer
  • T. H. Nguyen
  • P. Naveilhan
  • L. Lescaudron
  • I. Anegon
Original Paper

Abstract

Adoptive cell transfer studies in regenerative research and identification of genetically modified cells after gene therapy in vivo require unequivocally identifying and tracking the donor cells in the host tissues, ideally over several days or for up to several months. The use of reporter genes allows identifying the transferred cells but unfortunately most are immunogenic to wild-type hosts and thus trigger rejection in few days. The availability of transgenic animals from the same strain that would express either high levels of the transgene to identify the cells or low levels but that would be tolerant to the transgene would allow performing long-term analysis of labelled cells. Herein, using lentiviral vectors we develop two new lines of GFP-expressing transgenic rats displaying different levels and patterns of GFP-expression. The “high-expresser” line (GFPhigh) displayed high expression in most tissues, including adult neurons and neural precursors, mesenchymal stem cells and in all leukocytes subtypes analysed, including myeloid and plasmacytoid dendritic cells, cells that have not or only poorly characterized in previous GFP-transgenic rats. These GFPhigh-transgenic rats could be useful for transplantation and immunological studies using GFP-positive cells/tissue. The “low-expresser” line expressed very low levels of GFP only in the liver and in less than 5% of lymphoid cells. We demonstrate these animals did not develop detectable humoral and cellular immune responses against both transferred GFP-positive splenocytes and lentivirus-mediated GFP gene transfer. Thus, these GFP-transgenic rats represent useful tools for regenerative medicine and gene therapy.

Keywords

Transgenic rats Lentiviral vectors Dendritic cells Neural stem/progenitor cells Immune tolerance 

References

  1. Aitman TJ, Critser JK, Cuppen E, Dominiczak A, Fernandez-Suarez XM, Flint J, Gauguier D, Geurts AM, Gould M, Harris PC, Holmdahl R, Hubner N, Izsvak Z, Jacob HJ, Kuramoto T, Kwitek AE, Marrone A, Mashimo T, Moreno C, Mullins J, Mullins L, Olsson T, Pravenec M, Riley L, Saar K, Serikawa T, Shull JD, Szpirer C, Twigger SN, Voigt B, Worley K (2008) Progress and prospects in rat genetics: a community view. Nat Genet 40:516–522CrossRefPubMedGoogle Scholar
  2. Azizi SA, Stokes D, Augelli BJ, DiGirolamo C, Prockop DJ (1998) Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats-similarities to astrocyte grafts. Proc Natl Acad Sci USA 95:3908–3913CrossRefPubMedGoogle Scholar
  3. Barry FP, Murphy JM (2004) Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol 36:568–584CrossRefPubMedGoogle Scholar
  4. Blanco P, Palucka AK, Pascual V, Banchereau J (2008) Dendritic cells and cytokines in human inflammatory and autoimmune diseases. Cytokine Growth Factor Rev 19:41–52CrossRefPubMedGoogle Scholar
  5. Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805CrossRefPubMedGoogle Scholar
  6. Cronkhite JT, Norlander C, Furth JK, Levan G, Garbers DL, Hammer RE (2005) Male and female germline specific expression of an EGFP reporter gene in a unique strain of transgenic rats. Dev Biol 284(1):171–183CrossRefPubMedGoogle Scholar
  7. Francis JS, Olariu A, Kobayashi E, Leone P (2007) GFP-transgenic Lewis rats as a cell source for oligodendrocyte replacement. Exp Neurol 205:177–189CrossRefPubMedGoogle Scholar
  8. Gambotto A, Dworacki G, Cicinnati V, Kenniston T, Steitz J, Tuting T, Robbins PD, DeLeo AB (2000) Immunogenicity of enhanced green fluorescent protein (EGFP) in BALB/c mice: identification of an H2-Kd-restricted CTL epitope. Gene Ther 7:2036–2040CrossRefPubMedGoogle Scholar
  9. Grieshammer U, McGrew MJ, Rosenthal N (1995) Role of methylation in maintenance of positionally restricted transgene expression in developing muscle. Development 121:2245–2253PubMedGoogle Scholar
  10. Gritti A, Parati EA, Cova L, Frolichsthal P, Galli R, Wanke E, Faravelli L, Morassutti DJ, Roisen F, Nickel DD, Vescovi AL (1996) Multipotential stem cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor. J Neurosci 16:1091–1100PubMedGoogle Scholar
  11. Hakamata Y, Tahara K, Uchida H, Sakuma Y, Nakamura M, Kume A, Murakami T, Takahashi M, Takahashi R, Hirabayashi M, Ueda M, Miyoshi I, Kasai N, Kobayashi E (2001) Green fluorescent protein-transgenic rat: a tool for organ transplantation research. Biochem Biophys Res Commun 286:779–785CrossRefPubMedGoogle Scholar
  12. Hakamata Y, Murakami T, Kobayashi E (2006) “Firefy rats” as an organ/cellular source for long-term in vivo bioluminescent imaging. Transplantation 81:1179–1184CrossRefPubMedGoogle Scholar
  13. Hamra FK, Gatlin J, Chapman KM, Grellhesl DM, Garcia JV, Hammer RE, Garbers DL (2002) Production of transgenic rats by lentiviral transduction of male germ-line stem cells. Proc Natl Acad Sci USA 99(23):14931–14936CrossRefPubMedGoogle Scholar
  14. Hofmann A, Kessler B, Ewerling S, Kabermann A, Brem G, Wolf E, Pfeifer A (2006) Epigenetic regulation of lentiviral transgene vectors in a large animal model. Mol Ther 13:59–66CrossRefPubMedGoogle Scholar
  15. Hubert FX, Voisine C, Louvet C, Heslan M, Josien R (2004) Rat plasmacytoid dendritic cells are an abundant subset of MHC class II + CD4 + CD11b-OX62- and type I IFN-producing cells that exhibit selective expression of Toll-like receptors 7 and 9 and strong responsiveness to CpG. J Immunol 172:7485–7494PubMedGoogle Scholar
  16. Inoue H, Ohsawa I, Murakami T, Kimura A, Hakamata Y, Sato Y, Kaneko T, Takahashi M, Okada T, Ozawa K, Francis J, Leone P, Kobayashi E (2005) Development of new inbred transgenic strains of rats with LacZ or GFP. Biochem Biophys Res Commun 329:288–295CrossRefPubMedGoogle Scholar
  17. Itakura E, Odaira K, Yokoyama K, Osuna M, Hara T, Inoue K (2007) Generation of transgenic rats expressing green fluorescent protein in S-100beta-producing pituitary folliculo-stellate cells and brain astrocytes. Endocrinology 148(4):1518–1523CrossRefPubMedGoogle Scholar
  18. Ito T, Suzuki A, Imai E, Okabe M, Hori M (2001) Bone marrow is a reservoir of repopulating mesangial cells during glomerular remodeling. J Am Soc Nephrol 12(12):2625–2635PubMedGoogle Scholar
  19. Jahner D, Stuhlmann H, Stewart CL, Harbers K, Lohler J, Simon I, Jaenisch R (1982) De novo methylation and expression of retroviral genomes during mouse embryogenesis. Nature 298:623–628CrossRefPubMedGoogle Scholar
  20. Karpen GH (1994) Position-effect variegation and the new biology of heterochromatin. Curr Opin Genet Dev 4:281–291CrossRefPubMedGoogle Scholar
  21. Lendahl U, Zimmerman LB, McKay RD (1990) CNS stem cells express a new class of intermediate filament protein. Cell 60:585–595CrossRefPubMedGoogle Scholar
  22. Lois C, Hong EJ, Pease S, Brown EJ, Baltimore D (2002) Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 295:868–872CrossRefPubMedGoogle Scholar
  23. Manfra DJ, Chen SC, Yang TY, Sullivan L, Wiekowski MT, Abbondanzo S, Vassileva G, Zalamea P, Cook DN, Lira SA (2001) Leukocytes expressing green fluorescent protein as novel reagents for adoptive cell transfer and bone marrow transplantation studies. Am J Pathol 158:41–47PubMedGoogle Scholar
  24. Menoret S, Aubert D, Tesson L, Braudeau C, Pichard V, Ferry N, Anegon I (2002) lacZ transgenic rats tolerant for beta-galactosidase: recipients for gene transfer studies using lacZ as a reporter gene. Hum Gene Ther 13:1383–1390CrossRefPubMedGoogle Scholar
  25. Michalkiewicz M, Michalkiewicz T, Geurts AM, Roman RJ, Slocum GR, Singer O, Weihrauch D, Greene AS, Kaldunski M, Verma IM, Jacob HJ, Cowley AW Jr (2007) Efficient transgenic rat production by a lentiviral vector. Am J Physiol Heart Circ Physiol 293:H881–H894CrossRefPubMedGoogle Scholar
  26. Mothe AJ, Kulbatski I, van Bendegem RL, Lee L, Kobayashi E, Keating A, Tator CH (2005) Analysis of green fluorescent protein expression in transgenic rats for tracking transplanted neural stem/progenitor cells. J Histochem Cytochem 53(10):1215–1226CrossRefPubMedGoogle Scholar
  27. Nguyen TH, Bellodi-Privato M, Aubert D, Pichard V, Myara A, Trono D, Ferry N (2005) Therapeutic lentivirus-mediated neonatal in vivo gene therapy in hyperbilirubinemic Gunn rats. Mol Ther 12:852–859CrossRefPubMedGoogle Scholar
  28. Peche H, Trinite B, Martinet B, Cuturi MC (2005) Prolongation of heart allograft survival by immature dendritic cells generated from recipient type bone marrow progenitors. Am J Transplant 5:255–267CrossRefPubMedGoogle Scholar
  29. Pfeifer A (2006) Lentiviral transgenesis-a versatile tool for basic research and gene therapy. Curr Gene Ther 6:535–542CrossRefPubMedGoogle Scholar
  30. Pfeifer A, Ikawa M, Dayn Y, Verma IM (2002) Transgenesis by lentiviral vectors: lack of gene silencing in mammalian embryonic stem cells and preimplantation embryos. Proc Natl Acad Sci USA 99:2140–2145CrossRefPubMedGoogle Scholar
  31. Prasher DC, Eckenrode VK, Ward WW, Prendergast FG, Cormier MJ (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111:229–233CrossRefPubMedGoogle Scholar
  32. Remy S, Canova C, Nerrière-Daguin V, Martin C, Melchior B, Neveu I, Charreau B, Soulillou J-P, Brachet P (2001) Different mechanisms mediate the rejection of porcine neurons or endothelial cells transplanted into the rat striatum. Xenotransplantation 8:136–148CrossRefPubMedGoogle Scholar
  33. Rosenzweig M, Connole M, Glickman R, Yue SP, Noren B, DeMaria M, Johnson RP (2001) Induction of cytotoxic T lymphocyte and antibody responses to enhanced green fluorescent protein following transplantation of transduced CD34(+) hematopoietic cells. Blood 97:1951–1959CrossRefPubMedGoogle Scholar
  34. Rossignol J, Boyer C, Thinard R, Remy S, Dugast AS, Dubayle D, Dey ND, Boeffard F, Delecrin J, Heymann D, Vanhove B, Anegon I, Naveilhan P, Dunbar GL, Lescaudron L (2009) Mesenchymal stem cells induce a weak immune response in the rat striatum after allo or xenotransplantation. J Cell Mol Med. doi:10.1111/j.1582-4934.2008.00657.x Google Scholar
  35. Sawamoto K, Nakao N, Kakishita K, Ogawa Y, Toyama Y, Yamamoto A, Yamaguchi M, Mori K, Goldman SA, Itakura T, Okano H (2001) Generation of dopaminergic neurons in the adult brain from mesencephalic precursor cells labeled with a nestin-GFP transgene. J Neurosci 21(11):3895–3903PubMedGoogle Scholar
  36. Sergent-Tanguy S, Veziers J, Bonnamain V, Boudin H, Neveu I, Naveilhan P (2006) Cell surface antigens on rat neural progenitors and characterization of the CD3 (+)/CD3 (−) cell populations. Differentiation 74:530–541CrossRefPubMedGoogle Scholar
  37. Stripecke R, Carmen Villacres M, Skelton D, Satake N, Halene S, Kohn D (1999) Immune response to green fluorescent protein: implications for gene therapy. Gene Ther 6:1305–1312CrossRefPubMedGoogle Scholar
  38. Takahashi M, Hakamata Y, Murakami T, Takeda S, Kaneko T, Takeuchi K, Takahashi R, Ueda M, Kobayashi E (2003) Establishment of lacZ-transgenic rats: a tool for regenerative research in myocardium. Biochem Biophys Res Commun 305:904–908CrossRefPubMedGoogle Scholar
  39. van den Brandt J, Wang D, Kwon SH, Heinkelein M, Reichardt HM (2004) Lentivirally generated eGFP-transgenic rats allow efficient cell tracking in vivo. Genesis 39:94–99CrossRefPubMedGoogle Scholar
  40. Voisine C, Hubert FX, Trinite B, Heslan M, Josien R (2002) Two phenotypically distinct subsets of spleen dendritic cells in rats exhibit different cytokine production and T cell stimulatory activity. J Immunol 169:2284–2291PubMedGoogle Scholar
  41. Zhang F, Thornhill SI, Howe SJ, Ulaganathan M, Schambach A, Sinclair J, Kinnon C, Gaspar HB, Antoniou M, Thrasher AJ (2007) Lentiviral vectors containing an enhancer-less ubiquitously acting chromatin opening element (UCOE) provide highly reproducible and stable transgene expression in hematopoietic cells. Blood 110:1448–1457CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • S. Remy
    • 1
    • 2
    • 3
  • L. Tesson
    • 1
    • 2
    • 3
  • C. Usal
    • 1
    • 2
    • 3
  • S. Menoret
    • 1
    • 2
    • 3
  • V. Bonnamain
    • 1
    • 2
    • 3
  • V. Nerriere-Daguin
    • 1
    • 2
    • 3
  • J. Rossignol
    • 1
    • 2
    • 3
  • C. Boyer
    • 1
    • 2
    • 3
  • T. H. Nguyen
    • 4
    • 5
  • P. Naveilhan
    • 1
    • 2
    • 3
  • L. Lescaudron
    • 1
    • 2
    • 3
  • I. Anegon
    • 1
    • 2
    • 3
  1. 1.INSERM, U643Nantes cedex 01, NantesFrance
  2. 2.CHU Nantes, Institut de Transplantation et de Recherche en Transplantation, ITERTNantesFrance
  3. 3.Faculté de MédecineUniversité de NantesNantesFrance
  4. 4.INSERM, U948NantesFrance
  5. 5.CHU NantesNantesFrance

Personalised recommendations