Transgenic Research

, Volume 19, Issue 3, pp 473–487

Construction of a binary transgenic gene expression system for recombinant protein production in the middle silk gland of the silkworm Bombyx mori

  • Ken-ichiro Tatematsu
  • Isao Kobayashi
  • Keiro Uchino
  • Hideki Sezutsu
  • Tetsuya Iizuka
  • Naoyuki Yonemura
  • Toshiki Tamura
Original Paper
  • 515 Downloads

Abstract

To construct an efficient system for the production of recombinant proteins in silkworm (Bombyx mori), we investigated the promoter activity of the silkworm sericin 1, 2, and 3 genes (Ser1, Ser2, and Ser3) using a GAL4/UAS binary gene expression system in transgenic silkworm. The promoter activity of the upstream region of Ser1 was strong, yielding high expression of an enhanced green fluorescent protein (EGFP) transgene in the middle and posterior regions of the middle silk gland (MSG) after day 2 of the fifth instar. The Ser3 upstream region exhibited moderate promoter activity in the anterior MSG, but the Ser2 upstream region did not exhibit any promoter activity. Since the strongest promoter activity was observed for Ser1, we devised a system for the production of recombinant proteins using a GAL4Ser1 promoter construct (Ser1-GAL4). Transgenic silkworms harboring both the Ser1-GAL4 construct and the previously reported upstream activating sequence (UAS)–EGFP construct, which contains the TATA box region of the Drosophilahsp70 gene, yielded approximately 100 μg EGFP per larva. When we then analyzed the TATA box region, signal peptide, and intron sequences for their effects on production from the UAS-EGFP construct, we found that the optimization of these sequences effectively increased production to an average of 500 μg EGFP protein per transgenic larva. We conclude that this binary system is a useful tool for the mass production of recombinant proteins of biomedical and pharmaceutical interest in silkworm.

Keywords

Silkworm Bombyx Transgenic Bioreactor Recombinant protein 

References

  1. Adachi T, Tomita M, Shimizu K, Ogawa S, Yoshizato K (2006) Generation of hybrid transgenic silkworms that express Bombyx mori prolyl-hydroxylase alpha-subunits and human collagens in posterior silk glands: production of cocoons that contained collagens with hydroxylated proline residues. J Biotechnol 126:205–219. doi:10.1016/j.jbiotec.2006.04.035 CrossRefPubMedGoogle Scholar
  2. Couble P, Michaille JJ, Garel A, Couble ML, Prudhomme JC (1987) Developmental switches of sericin mRNA splicing in individual cells of Bombyx mori silkgland. Dev Biol 124:431–440. doi:10.1016/0012-1606(87)90496-9 CrossRefPubMedGoogle Scholar
  3. Dyck MK, Lacroix D, Pothier F, Sirard M-A (2003) Making recombinant proteins in animals—different systems, different applications. Trends Biotechnol 21:394–399. doi:10.1016/S0167-7799(03)00190-2 CrossRefPubMedGoogle Scholar
  4. Guo X, Zhang Y, Zhang X, Wang S, Lu C (2008) Recognition of signal peptide by protein translocation machinery in middle silk gland of silkworm Bombyx mori. Acta Biochim Biophys Sin 40:38–46. doi:10.1111/j.1745-7270.2008.00376.x PubMedGoogle Scholar
  5. Hidalgo A, Brand H (1997) Targeted neuronal ablation: the role of pioneer neurons in guidance and fasciculation in the CNS of Drosophila. Development 124:3253–3262PubMedGoogle Scholar
  6. Hino R, Tomita M, Yoshizato K (2006) The generation of germline transgenic silkworms for the production of biologically active recombinant fusion proteins of fibroin and human basic fibroblast growth factor. Biomaterials 27:5715–5724. doi:10.1016/j.biomaterials.2006.07.028 CrossRefPubMedGoogle Scholar
  7. Iizuka M, Tomita M, Shimizu K, Kikuchi Y, Yoshizato K (2008) Translational enhancement of recombinant protein synthesis in transgenic silkworms by a 5′-untranslated region of polyhedrin gene of Bombyx mori Nucleopolyhedrovirus. J Biosci Bioeng 105:595–603. doi:10.1263/jbb.105.595 CrossRefPubMedGoogle Scholar
  8. Imamura M, Nakai J, Inoue S, Quan GX, Kanda T, Tamura T (2003) Targeted gene expression using the GAL4/UAS system in the silkworm Bombyx mori. Genetics 165:1329–1340PubMedGoogle Scholar
  9. Inoue S, Tanaka K, Arisaka F, Kimura S, Ohtomo K, Mizuno S (2000) Silk fibroin of Bombyx mori is secreted, assembling a high molecular mass elementary unit consisting of H-chain, L-chain, and P25, with a 6:6:1 molar ratio. J Biol Chem 275:40517–40528. doi:10.1074/jbc.M006897200 CrossRefPubMedGoogle Scholar
  10. Inoue S, Kanda T, Imamura M, Quan GX, Kojima K, Tanaka H, Tomita M, Hino R, Yoshizato K, Mizuno S, Tamura T (2005) A fibroin secretion-deficient silkworm mutant, Nd-sD, provides an efficient system for producing recombinant proteins. Insect Biochem Mol Biol 35:51–59. doi:10.1016/j.ibmb.2004.10.002 CrossRefPubMedGoogle Scholar
  11. Kojima K, Kuwana Y, Sezutsu H, Kobayashi I, Uchino K, Tamura T, Tamada Y (2007) A new method for the modification of fibroin heavy chain protein in the transgenic silkworm. Biosci Biotechnol Biochem 71:2943–2951. doi:10.1271/bbb.70353 CrossRefPubMedGoogle Scholar
  12. Kurihara H, Sezutsu H, Tamura T, Yamada K (2007) Production of an active feline interferon in the cocoon of transgenic silkworms using the fibroin H-chain expression system. Biochem Biophys Res Commun 355:976–980. doi:10.1016/j.bbrc.2007.02.055 CrossRefPubMedGoogle Scholar
  13. Lienard D, Sourrouille C, Gomord V, Faye L (2007) Pharming and transgenic plants. Biotechnol Annu Rev 13:115–147. doi:10.1016/S1387-2656(07)13006-4 CrossRefPubMedGoogle Scholar
  14. Liu Y, Yu L, Guo X, Guo T, Wang S, Lu C (2006) Analysis of tissue-specific region in sericin 1 gene promoter of Bombyx mori. Biochem Biophys Res Commun 342:273–279. doi:10.1016/j.bbrc.2006.01.140 CrossRefPubMedGoogle Scholar
  15. Matsuno K, Hui CC, Takiya S, Suzuki T, Ueno K, Suzuki Y (1989) Transcription signals and protein binding sites for sericin gene transcription in vitro. J Biol Chem 264:18707–18713PubMedGoogle Scholar
  16. Michaille JJ, Garel A, Prudhomme JC (1989) The expression of five middle silk gland specific genes is territorially regulated during the larval development of Bombyx mori. Insect Biochem 19:19–27. doi:10.1016/0020-1790(89)90005-X CrossRefGoogle Scholar
  17. Michaille JJ, Garel A, Prudhomme JC (1990) Cloning and characterization of the highly polymorphic Ser2 gene of Bombyx mori. Gene 86:177–184. doi:10.1016/0378-1119(90)90277-X CrossRefPubMedGoogle Scholar
  18. Mori K, Tanaka K, Kikuchi Y, Waga M, Waga S, Mizuno S (1995) Production of a chimeric fibroin light-chain polypeptide in a fibroin secretion-deficient naked pupa mutant of the silkworm Bombyx mori. J Mol Biol 251:217–228. doi:10.1006/jmbi.1995.0429 CrossRefPubMedGoogle Scholar
  19. Ogawa S, Tomita M, Shimizu K, Yoshizato K (2007) Generation of a transgenic silkworm that secretes recombinant proteins in the sericin layer of cocoon: production of recombinant human serum albumin. J Biotechnol 128:531–544. doi:10.1016/j.jbiotec.2006.10.019 CrossRefPubMedGoogle Scholar
  20. Okamoto H, Ishikawa E, Suzuki Y (1982) Structural analysis of sericin genes. Homologies with fibroin gene in the 5′ flanking nucleotide sequences. J Biol Chem 257:15192–15199PubMedGoogle Scholar
  21. Royer C, Jalabert A, Da Rocha M, Grenier AM, Mauchamp B, Couble P, Chavancy G (2005) Biosynthesis and cocoon-export of a recombinant globular protein in transgenic silkworms. Transgenic Res 14:463–472. doi:10.1007/s11248-005-4351-4 CrossRefPubMedGoogle Scholar
  22. Sakudoh T, Sezutsu H, Nakashima T, Kobayashi I, Fujimoto H, Uchino K, Banno Y, Iwano H, Maekawa H, Tamura T, Kataoka H, Tsuchida K (2007) Carotenoid silk coloration is controlled by a carotenoid-binding protein, a product of the Yellow blood gene. Proc Natl Acad Sci USA 104:8941–8946. doi:10.1073/pnas.0702860104 CrossRefPubMedGoogle Scholar
  23. Takasu Y, Yamada H, Tamura T, Sezutsu H, Mita K, Tsubouchi K (2007) Identification and characterization of a novel sericin gene expressed in the anterior middle silk gland of the silkworm Bombyx mori. Insect Biochem Mol Biol 37:1234–1240. doi:10.1016/j.ibmb.2007.07.009 CrossRefPubMedGoogle Scholar
  24. Takei F, Oyama F, Kimura K, Hyodo A, Mizuno S, Shimura K (1984) Reduced level of secretion and absence of subunit combination for the fibroin synthesized by a mutant silkworm, Nd(2). J Cell Biol 99:2005–2010CrossRefPubMedGoogle Scholar
  25. Tamura T, Thibert C, Royer C, Kanda T, Abraham E, Kamba M, Komoto N, Thomas JL, Mauchamp B, Chavancy G, Shirk P, Fraser M, Prudhomme JC, Couble P (2000) Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector. Nat Biotechnol 18:81–84. doi:10.1038/71978 CrossRefPubMedGoogle Scholar
  26. Tamura T, Kuwabara N, Uchino K, Kobayashi I, Kanda T (2007) An improved DNA injection method for silkworm eggs drastically increases the efficiency of producing transgenic silkworms. J Insect Biotechnol Sericol 76:155–159Google Scholar
  27. Thomas JL, Da Rocha M, Besse A, Mauchamp B, Chavancy G (2002) 3×P3-EGFP marker facilitates screening for transgenic silkworm Bombyx mori L. from the embryonic stage onwards. Insect Biochem Mol Biol 32:247–253. doi:10.1016/S0965-1748(01)00150-3 CrossRefPubMedGoogle Scholar
  28. Tomita M, Munetsuna H, Sato T, Adachi T, Hino R, Hayashi M, Shimizu K, Nakamura N, Tamura T, Yoshizato K (2003) Transgenic silkworms produce recombinant human type III procollagen in cocoons. Nat Biotechnol 21:52–56. doi:10.1038/nbt771 CrossRefPubMedGoogle Scholar
  29. Tomita M, Hino R, Ogawa S, Iizuka M, Adachi T, Shimizu K, Sotoshiro H, Yoshizato K (2007) A germline transgenic silkworm that secretes recombinant proteins in the sericin layer of cocoon. Transgenic Res 16:449–465. doi:10.1007/s11248-007-9087-x CrossRefPubMedGoogle Scholar
  30. Uchino K, Imamura M, Sezutsu H, Kobayashi I, Kojima K, Kanda T, Tamura T (2006) Evaluating promoter sequences for trapping an enhancer activity in the silkworm Bombyx mori. J Insect Biotechnol Sericol 75:89–97Google Scholar
  31. Wurm FM (2003) Human therapeutic proteins from silkworms. Nat Biotechnol 21:34–35. doi:10.1038/nbt0103-34 CrossRefPubMedGoogle Scholar
  32. Yanagisawa S, Zhu Z, Kobayashi I, Uchino K, Tamada Y, Tamura T, Asakura T (2007) Improving cell-adhesive properties of recombinant Bombyx mori silk by incorporation of collagen or fibronectin derived peptides produced by transgenic silkworms. Biomacromolecules 8:3487–3492. doi:10.1021/bm700646f CrossRefPubMedGoogle Scholar
  33. Zhao A, Zhao T, Zhang Y, Xia Q, Lu C, Zhou Z, Xiang Z, Nakagaki M (2009) New and highly efficient expression systems for expressing selectively foreign protein in the silk glands of transgenic silkworm. Transgenic Res. doi:10.1007/s11248-009-9295-7

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Ken-ichiro Tatematsu
    • 1
  • Isao Kobayashi
    • 1
  • Keiro Uchino
    • 1
  • Hideki Sezutsu
    • 1
  • Tetsuya Iizuka
    • 1
  • Naoyuki Yonemura
    • 1
  • Toshiki Tamura
    • 1
  1. 1.Transgenic Silkworm Research CenterNational Institute of Agrobiological SciencesTsukubaJapan

Personalised recommendations