Transgenic Research

, Volume 19, Issue 3, pp 415–424 | Cite as

Acquired resistance to the rice blast in transgenic rice accumulating the antimicrobial peptide thanatin

  • Tomohiro Imamura
  • Michiko Yasuda
  • Hiroaki Kusano
  • Hideo Nakashita
  • Yuko Ohno
  • Takashi Kamakura
  • Seiichi Taguchi
  • Hiroaki Shimada
Original Paper

Abstract

Thanatin is an antimicrobial peptide with a strong and wide-ranging antimicrobial spectrum, including certain species of fungi and Gram-negative and Gram-positive bacteria. To evaluate the application of thanatin to the generation of disease-resistant plants, we introduced a synthetic thanatin gene into rice. Several transformants that expressed the introduced gene showed significant level of antimicrobial activity. The substances showing antimicrobial activity were partially purified from these transformants and their properties were determined. The molecule with characteristics similar to those of native thanatin on the elution pattern in HPLC analysis had an identical molecular mass to that of native molecule. It should also be noted that the transformant acquired a sufficient level of resistance to the rice blast fungus, Magnaporthe oryzae, presumably due to the repressive activity of thanatin to its initial stage of infection. This result demonstrates that thanatin has antifungal activity for M. oryzae and that the introduction of the thanatin gene into rice is effective in generating a plant resistant to rice blast disease.

Keywords

Antimicrobial peptide Thanatin Oryza sativa Rice blast Disease resistance Molecular farming 

Notes

Acknowledgments

We thank Ms. Yumiko Nakamura (Ebara Research Co., Ltd., Japan) and Dr. Kazunori Taguchi (RIKEN, Japan) for ESI-MS analysis. We also thank Dr. Ken′ichiro Matsumoto and our colleagues for many fruitful discussions.

References

  1. Ausubel FM et al (1987) Current protocols in molecular biology. Wiley, New YorkGoogle Scholar
  2. Baker B, Zanmbryski P, Staskawicz B, Dinesh-Kumer SP (1997) Signaling in plant-microbe interactions. Science 276:726–733. doi:10.1126/science.276.5313.726 CrossRefPubMedGoogle Scholar
  3. Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250. doi:10.1038/nrmicro1098 CrossRefPubMedGoogle Scholar
  4. Coca M, Peñas G, Gómez J, Campo S, Bortolotti C, Messeguer J, Segundo BS (2006) Enhanced resistance to the rice blast fungus Magnaporthe grisea conferred by expression of a cecropin A gene in transgenic rice. Planta 223:392–406. doi:10.1007/s00425-005-0069-z CrossRefPubMedGoogle Scholar
  5. Daniell H, Streatfield SJ, Wycoff K (2001) Medical molecular farming: production of antibodies, biopharmaceuticals and edible vaccines in plants. Trends Plant Sci 6:219–226. doi:10.1016/S1360-1385(01)01922-7 CrossRefPubMedGoogle Scholar
  6. Fehlbaum P, Bulet P, Chemysh S, Briand JP, Roussel JP, Letellier L, Hetru C, Hoffmann JA (1996) Structure-activity analysis of thanatin, a 21-residue inducible insect defense peptide with sequence homology to frog antimicrobial peptides. Proc Natl Acad Sci USA 93:1221–1225CrossRefPubMedGoogle Scholar
  7. George NA (1997) Plant diseases caused by fungi. In: George NA (ed) Plant pathology, 4th edn. Academic Press, San Diego, pp 245–406Google Scholar
  8. Hancock RE, Lehrer R (1998) Cationic peptides: a new source of antibiotics. Trends Biotechnol 16:82–88. doi:10.1016/S0167-7799(97)01156-6 CrossRefPubMedGoogle Scholar
  9. Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282. doi:10.1046/j.1365-313X.1994.6020271.x CrossRefPubMedGoogle Scholar
  10. Imamura T, Kusano H, Kajigaya Y, Ichikawa M, Shimada H (2007) A rice dihydrosphingosine C4 hydroxylase (DSH1) gene, which is abundantly expressed in the stigmas, vascular cells and apical meristem, may be involved in fertility. Plant Cell Physiol 48:1108–1120. doi:10.1093/pcp/pcm084 CrossRefPubMedGoogle Scholar
  11. Imamura T, Yamamoto N, Tamura A, Murabayashi S, Hashimoto S, Shimada H, Taguchi S (2008) NMR based structure-activity relationship analysis of an antimicrobial peptide, thanatin, engineered by site-specific chemical modification: activity improvement and spectrum alteration. Biochem Biophys Res Commun 396:609–615. doi:10.1016/j.bbrc.2008.02.057 CrossRefGoogle Scholar
  12. Kamakura T, Yamaguchi S, Saitoh K, Teraoka T, Yamaguchi I (2002) A novel gene, CBP1, encoding a putative extracellular chitin-binding protein, may play an important role in the hydrophobic surface sensing of Magnaporthe grisea during appressorium differentiation. Mol Plant Microbe Interact 15:437–444. doi:10.1094/MPMI.2002.15.5.437 CrossRefPubMedGoogle Scholar
  13. Kusnadi AR, Nikolov ZL, Howard JA (1997) Production of recombinant proteins in transgenic plants: practical considerations. Biotechnol Bioeng 56:473–484. doi:10.1002/(SICI)1097-0290(19971205)56:5<473:AID-BIT1>3.0.CO;2-F CrossRefPubMedGoogle Scholar
  14. Lorenzo O, Piqueras R, Sánchez-Serrano JJ, Solano R (2003) ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell 15:165–178. doi:10.1105/tpc.007468 CrossRefPubMedGoogle Scholar
  15. Marcos JF, Muñoz A, Pérez-Payá E, Misra S, López-García B (2008) Identification and rational design of novel antimicrobial peptides for plant protection. Annu Rev Phytopathol 46:273–301. doi:10.1146/annurev.phyto.121307.094843 CrossRefPubMedGoogle Scholar
  16. Mauch F, Mauch-Mani B, Gaille C, Kull B, Haas D, Reimmann C (2001) Manipulation of salicylate content in Arabidopsis thaliana by the expression of an engineered bacterial salicylate synthase. Plant J 25:67–77. doi:10.1111/j.1365-313X.2001.00940.x CrossRefPubMedGoogle Scholar
  17. Mitsuhara I, Matsufuru H, Ohshima M, Kaku H, Nakajima Y, Murai N, Natori S, Ohashi Y (2000) Induced expression of sarcotoxin IA enhanced host resistance against both bacterial and fungal pathogens in transgenic tobacco. Mol Plant Microbe Interact 13:860–868. doi:10.1094/MPMI.2000.13.8.860 CrossRefPubMedGoogle Scholar
  18. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 18:100–127. doi:10.1111/j.1399-3054.1962.tb08052.x Google Scholar
  19. Murray MG, Thompson WF (1980) Rapid isolation of high-molecular-weight plant DNA. Nucleic Acids Res 8:4321–4325CrossRefPubMedGoogle Scholar
  20. Osusky M, Osuska L, Hancock RE, Kay WW, Misra S (2004) Transgenic potatoes expressing a novel cationic peptide are resistant to late blight and pink rot. Transgenic Res 13:181–190. doi:10.1023/B:TRAG.0000026076.72779.60 CrossRefPubMedGoogle Scholar
  21. Sharma A, Sharma R, Imamura M, Yamakawa M, Machii H (2000) Transgenic expression of cecropin B, an antibacterial peptide from Bombyx mori, confers enhanced resistance to bacterial leaf blight in rice. FEBS Lett 484:7–11. doi:10.1016/S0014-5793(00)02106-2 CrossRefPubMedGoogle Scholar
  22. Taguchi S, Kuwasako K, Suenaga A, Okada M, Momose H (2000) Functional mapping against Escherichia coli for the broad-spectrum antimicrobial peptide, thanatin, based on an in vivo monitoring assay system. J Biochem 128:745–754PubMedGoogle Scholar
  23. Twyman RM, Stoger E, Schillberg S, Christou P, Fischer R (2003) Molecular farming in plants: host systems and expression technology. Trends Biotechnol 21:570–578. doi:10.1016/j.tibtech.2003.10.002 CrossRefPubMedGoogle Scholar
  24. Yevtushenko DP, Misra S (2007) Comparison of pathogen-induced expression and efficacy of two amphibian antimicrobial peptides, MsrA2 and temporin A, for engineering wide-spectrum disease resistance in tobacco. Plant Biotechnol J 5:720–734. doi:10.1093/jxb/eri165 CrossRefPubMedGoogle Scholar
  25. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395. doi:10.1038/415389a CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Tomohiro Imamura
    • 1
    • 2
    • 6
  • Michiko Yasuda
    • 3
  • Hiroaki Kusano
    • 1
  • Hideo Nakashita
    • 3
  • Yuko Ohno
    • 5
  • Takashi Kamakura
    • 5
  • Seiichi Taguchi
    • 4
  • Hiroaki Shimada
    • 1
    • 2
  1. 1.Department of Biological Science and TechnologyTokyo University of ScienceNodaJapan
  2. 2.Research Institute of Science and TechnologyTokyo University of ScienceNodaJapan
  3. 3.Plant Acquired Immunity Research Unit, Advanced Science InstituteRIKENWakoJapan
  4. 4.Division of Biotechnology and Macromolecular Chemistry, Graduate School of EngineeringHokkaido UniversitySapporoJapan
  5. 5.Department of Applied Biological ScienceTokyo University of ScienceNodaJapan
  6. 6.Iwate Biotechnology Research CenterKitakamiJapan

Personalised recommendations