Advertisement

Transgenic Research

, Volume 19, Issue 3, pp 399–414 | Cite as

Variegation and silencing in a lentiviral-based murine transgenic model

  • Delphine Baup
  • Laurent Fraga
  • Eileen Pernot
  • Annette Van Acker
  • Anne-Sophie Vanherck
  • Karine Breckpot
  • Kris Thielemans
  • Stéphane Schurmans
  • Muriel Moser
  • Oberdan LeoEmail author
Original Paper

Abstract

Lentiviral based constructs represent a recent development in the generation of transgenic animals. The ease of use, and the fact that the same backbone vectors can be used to down-modulate endogenous gene expression and to produce transgenic animals overexpressing a gene of interest, have fuelled growing interest in this technology. In this study, we have used a lentiviral delivery system to generate transgenic mice expressing altered levels (up or downregulated) of a gene of interest. Although this lentiviral-based approach led to high levels of transgenesis and germ line transmission, a wide variation in transgene expression was observed in most first and second generation mouse lines. In particular, despite the segregation of integrants into single-copy expressing mouse lines, transgene expression appeared to be the target of epigenetic regulatory mechanism, often causing the coexistence of high and low transgene expressing cells within a given tissue such as blood peripheral lymphocytes. The establishment and analysis of large number of mouse lines may therefore be required to select a stable transgenic line with pancellular expression of a gene of interest using this lentiviral-based approach.

Keywords

Lentiviral transgenesis Silencing Variegation RNA interference Mice 

Notes

Acknowledgments

We thank, M. Blockmans for providing lentiviral construct, T. Van Reeth for kind gift of the PGK-Cre expressing mouse strain. We also wish to thank Dr. D. Trono (University of Geneva, Switzerland) for providing the pWPXLd, psPAX2 and pMD2.G plasmids and Dr. SJ. Elledge (Harvard Medical School Boston, U.S.A.) for generously providing the pPRIME-CMV-GFP-FF3 vector. This work was supported by The Belgian Program in Interuniversity Poles of Attraction Initiated by the BelgianSate, Prime Minister’s office, Science Policy Programming, by a Research Concerted Action of the Communauté française de Belgique and by the “Région Wallonne” (Programme CIBLE), Belgium. DB, LF and EP were supported by a grant from “Fonds pour la formation à la Recherche dans l’Industrie et dans l’Agriculture, FRIA”, while SS and MM are supported by the “Fonds National de la Recherche Scientifique de Belgique, FRS-FNRS”. The scientific responsibility is assumed by the authors.

Supplementary material

11248_2009_9318_MOESM1_ESM.ppt (583 kb)
(PPT 1140 kb)
11248_2009_9318_MOESM2_ESM.ppt (296 kb)
(PPT 296 kb)
11248_2009_9318_MOESM3_ESM.ppt (264 kb)
(PPT 583 kb)

References

  1. Bednarik DP, Cook JA, Pitha PM (1990) Inactivation of the HIV LTR by DNA CpG methylation: evidence for a role in latency. EMBO J 9:1157–1164PubMedGoogle Scholar
  2. Breckpot K, Dullaers M, Bonehill A, van Meirvenne S, Heirman C, de Greef C, van der Bruggen P, Thielemans K (2003) Lentivirally transduced dendritic cells as a tool for cancer immunotherapy. J Gene Med 5:654–667CrossRefPubMedGoogle Scholar
  3. Brummelkamp TR, Bernards R, Agami R (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550–553CrossRefPubMedGoogle Scholar
  4. Dann CT (2007) New technology for an old favorite: lentiviral transgenesis and RNAi in rats. Transgenic Res 16:571–580CrossRefPubMedGoogle Scholar
  5. Dann CT, Garbers DL (2008) Production of knockdown rats by lentiviral transduction of embryos with short hairpin RNA transgenes. Methods Mol Biol 450:193–209CrossRefPubMedGoogle Scholar
  6. Dobie K, Mehtali M, McClenaghan M, Lathe R (1997) Variegated gene expression in mice. Trends Genet 13:127–130CrossRefPubMedGoogle Scholar
  7. Ellis J (2005) Silencing and variegation of gammaretrovirus and lentivirus vectors. Hum Gene Ther 16:1241–1246CrossRefPubMedGoogle Scholar
  8. Fregien N, Davidson N (1986) Activating elements in the promoter region of the chicken beta-actin gene. Gene 48:1–11CrossRefPubMedGoogle Scholar
  9. Gordon JW, Scangos GA, Plotkin DJ, Barbosa JA, Ruddle FH (1980) Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Natl Acad Sci USA 77:7380–7384CrossRefPubMedGoogle Scholar
  10. Hamra FK, Gatlin J, Chapman KM, Grellhesl DM, Garcia JV, Hammer RE, Garbers DL (2002) Production of transgenic rats by lentiviral transduction of male germ-line stem cells. Proc Natl Acad Sci USA 99:14931–14936CrossRefPubMedGoogle Scholar
  11. Hannon GJ (2002) RNA interference. Nature 418:244–251CrossRefPubMedGoogle Scholar
  12. Hofmann A, Kessler B, Ewerling S, Weppert M, Vogg B, Ludwig H, Stojkovic M, Boelhauve M, Brem G, Wolf E, Pfeifer A (2003) Efficient transgenesis in farm animals by lentiviral vectors. EMBO Rep 4:1054–1060CrossRefPubMedGoogle Scholar
  13. Hofmann A, Kessler B, Ewerling S, Kabermann A, Brem G, Wolf E, Pfeifer A (2006) Epigenetic regulation of lentiviral transgene vectors in a large animal model. Mol Ther 13:59–66CrossRefPubMedGoogle Scholar
  14. Ikawa M, Tanaka N, Kao WW, Verma IM (2003) Generation of transgenic mice using lentiviral vectors: a novel preclinical assessment of lentiviral vectors for gene therapy. Mol Ther 8:666–673CrossRefPubMedGoogle Scholar
  15. Karkkainen AM, Kotimaa A, Huusko J, Kholova I, Heinonen SE, Stefanska A, Dijkstra MH, Purhonen H, Hamalainen E, Makinen PI, Turunen MP, Yla-Herttuala S (2009) VEGF-D transgenic mice show enhanced blood capillary density, improved post-ischemic muscle regeneration and increased susceptibility to tumor formation. Blood 113:4468–4475CrossRefPubMedGoogle Scholar
  16. Kirilov M, Chai M, van der Hoeven F, Kloz U, Schmid W, Schutz G (2007) Germ line transmission and expression of an RNAi cassette in mice generated by a lentiviral vector system. Transgenic Res 16:783–793CrossRefPubMedGoogle Scholar
  17. Kissler S, Stern P, Takahashi K, Hunter K, Peterson LB, Wicker LS (2006) In vivo RNA interference demonstrates a role for Nramp1 in modifying susceptibility to type 1 diabetes. Nat Genet 38:479–483CrossRefPubMedGoogle Scholar
  18. Kvell K, Czompoly T, Hiripi L, Balogh P, Kobor J, Bodrogi L, Pongracz JE, Ritchie WA, Bosze Z (2009) Characterisation of eGFP-transgenic BALB/c mouse strain established by lentiviral transgenesis. Transgenic Res. doi: 10.1007/s11248-009-9288-6
  19. Lois C, Hong EJ, Pease S, Brown EJ, Baltimore D (2002) Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 295:868–872CrossRefPubMedGoogle Scholar
  20. McGrew MJ, Sherman A, Ellard FM, Lillico SG, Gilhooley HJ, Kingsman AJ, Mitrophanous KA, Sang H (2004) Efficient production of germline transgenic chickens using lentiviral vectors. EMBO Rep 5:728–733CrossRefPubMedGoogle Scholar
  21. Michalkiewicz M, Michalkiewicz T, Geurts AM, Roman RJ, Slocum GR, Singer O, Weihrauch D, Greene AS, Kaldunski M, Verma IM, Jacob HJ, Cowley AW Jr (2007) Efficient transgenic rat production by a lentiviral vector. Am J Physiol Heart Circ Physiol 293:H881–H894CrossRefPubMedGoogle Scholar
  22. Miyoshi H, Blomer U, Takahashi M, Gage FH, Verma IM (1998) Development of a self-inactivating lentivirus vector. J Virol 72:8150–8157PubMedGoogle Scholar
  23. Naldini L, Blomer U, Gage FH, Trono D, Verma IM (1996a) Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci USA 93:11382–11388CrossRefPubMedGoogle Scholar
  24. Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH, Verma IM, Trono D (1996b) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:263–267CrossRefPubMedGoogle Scholar
  25. Niwa H, Yamamura K, Miyazaki J (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108:193–199CrossRefPubMedGoogle Scholar
  26. Okabe M, Ikawa M, Kominami K, Nakanishi T, Nishimune Y (1997) ‘Green mice’ as a source of ubiquitous green cells. FEBS Lett 407:313–319CrossRefPubMedGoogle Scholar
  27. Oldenhove G, de Heusch M, Urbain-Vansanten G, Urbain J, Maliszewski C, Leo O, Moser M (2003) CD4 + CD25 + regulatory T cells control T helper cell type 1 responses to foreign antigens induced by mature dendritic cells in vivo. J Exp Med 198:259–266CrossRefPubMedGoogle Scholar
  28. Onnockx S, De Schutter J, Blockmans M, Xie J, Jacobs C, Vanderwinden JM, Erneux C, Pirson I (2008) The association between the SH2-containing inositol polyphosphate 5-Phosphatase 2 (SHIP2) and the adaptor protein APS has an impact on biochemical properties of both partners. J Cell Physiol 214:260–272CrossRefPubMedGoogle Scholar
  29. Pannell D, Ellis J (2001) Silencing of gene expression: implications for design of retrovirus vectors. Rev Med Virol 11:205–217CrossRefPubMedGoogle Scholar
  30. Park F (2007) Lentiviral vectors: are they the future of animal transgenesis? Physiol Genomics 31:159–173CrossRefPubMedGoogle Scholar
  31. Pfeifer A (2006) Lentiviral transgenesis–a versatile tool for basic research and gene therapy. Curr Gene Ther 6:535–542CrossRefPubMedGoogle Scholar
  32. Pfeifer A, Hofmann A (2009) Lentiviral transgenesis. Methods Mol Biol 530:391–405CrossRefPubMedGoogle Scholar
  33. Pfeifer A, Ikawa M, Dayn Y, Verma IM (2002) Transgenesis by lentiviral vectors: lack of gene silencing in mammalian embryonic stem cells and preimplantation embryos. Proc Natl Acad Sci USA 99:2140–2145CrossRefPubMedGoogle Scholar
  34. Rubinson DA, Dillon CP, Kwiatkowski AV, Sievers C, Yang L, Kopinja J, Rooney DL, Zhang M, Ihrig MM, McManus MT, Gertler FB, Scott ML, Van Parijs L (2003) A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet 33:401–406CrossRefPubMedGoogle Scholar
  35. Schroder AR, Shinn P, Chen H, Berry C, Ecker JR, Bushman F (2002) HIV-1 integration in the human genome favors active genes and local hotspots. Cell 110:521–529CrossRefPubMedGoogle Scholar
  36. Singer O, Verma IM (2008) Applications of lentiviral vectors for shRNA delivery and transgenesis. Curr Gene Ther 8:483–488CrossRefPubMedGoogle Scholar
  37. Singer O, Tiscornia G, Ikawa M, Verma IM (2006) Rapid generation of knockdown transgenic mice by silencing lentiviral vectors. Nat Protoc 1:286–292CrossRefPubMedGoogle Scholar
  38. Stegmeier F, Hu G, Rickles RJ, Hannon GJ, Elledge SJ (2005) A lentiviral microRNA-based system for single-copy polymerase II-regulated RNA interference in mammalian cells. Proc Natl Acad Sci USA 102:13212–13217CrossRefPubMedGoogle Scholar
  39. Tiscornia G, Singer O, Ikawa M, Verma IM (2003) A general method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA. Proc Natl Acad Sci USA 100:1844–1848CrossRefPubMedGoogle Scholar
  40. Van Laethem F, Baus E, Smyth LA, Andris F, Bex F, Urbain J, Kioussis D, Leo O (2001) Glucocorticoids attenuate T cell receptor signaling. J Exp Med 193:803–814CrossRefPubMedGoogle Scholar
  41. Ventura A, Meissner A, Dillon CP, McManus M, Sharp PA, Van Parijs L, Jaenisch R, Jacks T (2004) Cre-lox-regulated conditional RNA interference from transgenes. Proc Natl Acad Sci USA 101:10380–10385CrossRefPubMedGoogle Scholar
  42. Weinberger LS, Burnett JC, Toettcher JE, Arkin AP, Schaffer DV (2005) Stochastic gene expression in a lentiviral positive-feedback loop: HIV-1 Tat fluctuations drive phenotypic diversity. Cell 122:169–182CrossRefPubMedGoogle Scholar
  43. Xia XG, Zhou H, Samper E, Melov S, Xu Z (2006) Pol II-expressed shRNA knocks down Sod2 gene expression and causes phenotypes of the gene knockout in mice. PLoS Genet 2:e10CrossRefPubMedGoogle Scholar
  44. Yang SH, Cheng PH, Sullivan RT, Thomas JW, Chan AW (2008) Lentiviral integration preferences in transgenic mice. Genesis 46:711–718CrossRefPubMedGoogle Scholar
  45. Zufferey R, Dull T, Mandel RJ, Bukovsky A, Quiroz D, Naldini L, Trono D (1998) Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 72:9873–9880PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Delphine Baup
    • 1
  • Laurent Fraga
    • 1
  • Eileen Pernot
    • 2
  • Annette Van Acker
    • 1
  • Anne-Sophie Vanherck
    • 1
  • Karine Breckpot
    • 3
  • Kris Thielemans
    • 3
  • Stéphane Schurmans
    • 2
  • Muriel Moser
    • 1
  • Oberdan Leo
    • 1
    Email author
  1. 1.Laboratoire de Physiologie Animale, Faculté des SciencesInstitut de Biologie et de Médecine Moléculaire, Université Libre de BruxellesGosseliesBelgium
  2. 2.Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Faculté de MédecineUniversité Libre de BruxellesGosseliesBelgium
  3. 3.Laboratory of Molecular and Cellular Therapy, Department of Physiology and ImmunologyMedical School of the Vrije Universiteit BrusselBrusselBelgium

Personalised recommendations