Transgenic Research

, Volume 19, Issue 1, pp 113–119 | Cite as

Plastid transformation in eggplant (Solanum melongena L.)

  • A. K. Singh
  • S. S. Verma
  • K. C. BansalEmail author
Brief Communication


We have developed a method for plastid transformation in eggplant (Solanum melongena L.), a solanaceous plant species. Plastid transformation in eggplant was achieved by bombardment of green stem segments with pPRV111A plastid expression vector carrying the aadA gene encoding aminoglycoside 3′′-adenylyltransferase. Biolistic delivery of the pPRV111A plasmid yielded transplastomic plants at a frequency of two per 21 bombarded plates containing 25 stem explants each. Integration of the aadA gene in the plastome was verified by PCR analysis and also by Southern blotting using 16S rDNA (targeting sequence) and the aadA gene as a probe. Transplastomic expression of the aadA gene was verified by RT-PCR. The development of transplastomic technology in eggplant may open up exciting possibilities for novel gene introduction and expression in the engineered plastome for agronomic or pharmaceutical traits.


Plastid transformation Eggplant Site-specific integration Aminoglycoside 3′′-adenylyltransferase (aadA



We would like to thank Dr. Pal Maliga, Waksman Institute, Rutgers University, USA for providing pPRV111A plasmid. We are also grateful to Dr. Randy D. Dinkins, ARS Forage-Animal Production Research Unit, USDA, University of Kentucky, Lexington, USA for critical reading of the manuscript. This work was supported by a grant (9/83(149)2K2/EMR-I) from the Council of Scientific and Industrial Research, New Delhi, India.

Supplementary material

11248_2009_9290_MOESM_ESM.pdf (279 kb)
Supplementary material (PDF 280 kb)


  1. Bock R (2001) Transgenic plastids in basic research and plant biotechnology. J Mol Biol 312:425–438. doi: 10.1006/jmbi.2001.4960 CrossRefPubMedGoogle Scholar
  2. Bock R (2007) Plastid biotechnology: prospects for herbicide and insect resistance, metabolic engineering and molecular farming. Curr Opin Biotechnol 18:100–106. doi: 10.1016/j.copbio.2006.12.001 CrossRefPubMedGoogle Scholar
  3. Daniell H (2006) Production of biopharmaceuticals and vaccines in plants via the chloroplast genome. Biotechnol J 1:1071–1079. doi: 10.1002/biot.200600145 CrossRefPubMedGoogle Scholar
  4. Dufourmantel N, Pelissier B, Garcon F, Peltier G, Ferullo JM, Tissot G (2004) Generation of fertile transplastomic soybean. Plant Mol Biol 55:479–489. doi: 10.1007/s11103-004-0192-4 CrossRefPubMedGoogle Scholar
  5. Fari M, Nagy I, Csanyi M, Mityko J, Andrasfalvy A (1995) Agrobacterium mediated genetic transformation and plant regeneration via organogenesis and somatic embryogenesis from cotyledon leaves in eggplant (Solanum melongena L. cv. ‘Kecskemeti lila’). Plant Cell Rep 15:82–86. doi: 10.1007/BF01690259 CrossRefGoogle Scholar
  6. Filippone E, Lurquin PF (1989) Stable transformation of eggplant (Solanum melongena L.) by cocultivation of tissues with Agrobacterium tumefaciens carrying a binary plasmid vector. Plant Cell Rep 8:370–373. doi: 10.1007/BF00716677 CrossRefGoogle Scholar
  7. Franklin G, Sita GL (2003) Agrobacterium tumefaciens-mediated transformation of eggplant (Solanum melongena L.) using root explants. Plant Cell Rep 21:549–554PubMedGoogle Scholar
  8. Grevich JJ, Daniell H (2005) Chloroplast genetic engineering: recent advances and future perspectives. Crit Rev Plant Sci 24:83–107. doi: 10.1080/07352680590935387 CrossRefGoogle Scholar
  9. Guri A, Sink KC (1988) Agrobacterium transformation of eggplant. J Plant Physiol 133:52–55Google Scholar
  10. Hanyu H, Murata A, Park EY, Okabe M, Billings S, Jelenkovic G, Pedersen H, Chin CK (1999) Stability of luciferase gene expression in a long term period in transgenic eggplant, Solanum melongena. Plant Biotechnol 16:403–407Google Scholar
  11. Hou BK, Zhou YH, Wan LH, Zhang ZL, Shen GF, Chen ZH, Hu ZM (2003) Chloroplast transformation in oilseed rape. Transgenic Res 12:111–114CrossRefPubMedGoogle Scholar
  12. Kanamoto H, Yamashita A, Asao H, Okumura S, Takase H, Hattori M, Yokota A, Tomizawa K (2006) Efficient and stable transformation of Lactuca sativa L. cv. Cisco (lettuce) plastids. Transgenic Res 15:205–217. doi: 10.1007/s11248-005-3997-2 CrossRefPubMedGoogle Scholar
  13. Koop HU, Steinmuller K, Wagner H, Rossler C, Eibl C, Sacher L (1996) Integration of foreign sequences into the tobacco plastome via polyethylene glycol-mediated protoplast transformation. Planta 199:193–201. doi: 10.1007/BF00196559 CrossRefPubMedGoogle Scholar
  14. Koop HU, Herz S, Golds TJ, Nickelson J (2007) The genetic transformation of plastids. In: Bock R (ed) Cell and molecular biology of plastids, Topics Curr Genet, vol 19. Springer-Verlag, Berlin Heidelberg, pp 457–510CrossRefGoogle Scholar
  15. Kumar PA, Mandaokar A, Sreenivasu K, Chakrabarti SK, Bisaria S, Sharma SR, Kaur S, Sharma RP (1998) Insect-resistant transgenic brinjal plants. Mol Breed 4:33–37. doi: 10.1023/A:1009694016179 CrossRefGoogle Scholar
  16. Kumar S, Dhingra A, Daniell H (2004) Stable transformation of the cotton plastid genome and maternal inheritance of transgenes. Plant Mol Biol 56:203–216. doi: 10.1007/s11103-004-2907-y CrossRefPubMedGoogle Scholar
  17. Lelivelt CL, McCabe MS, Newell CA, Desnoo CB, van Dun KM, Birch-Machin I, Gray JC, Mills KH, Nugent JM (2005) Stable plastid transformation in lettuce (Lactuca sativa L). Plant Mol Biol 58:763–774CrossRefPubMedGoogle Scholar
  18. Liu CW, Lin CC, Chen JJW, Tseng MJ (2007) Stable chloroplast transformation in cabbage (Brassica oleracea L. var. capitata L.) by particle bombardment. Plant Cell Rep 26:1733–1744. doi: 10.1007/s00299-007-0374-z CrossRefPubMedGoogle Scholar
  19. Ma JK-C, Barros E, Bock R, Christou P, Dale PJ, Dix PJ, Fischer R, Irwin J, Mahoney R, Pezzotti M, Schillberg S, Sparrow P, Stoger E, Twyman RM, European Union Framework 6 Pharma-Planta Consortium (2005) Molecular farming for new drugs and vaccines. Current perspectives on the production of pharmaceuticals in transgenic plants. EMBO Rep 6:593–599. doi: 10.1038/sj.embor.7400470 CrossRefPubMedGoogle Scholar
  20. Maliga P (2004) Plastid transformation in higher plants. Annu Rev Plant Biol 55:289–313. doi: 10.1146/annurev.arplant.55.031903.141633 CrossRefPubMedGoogle Scholar
  21. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x CrossRefGoogle Scholar
  22. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325. doi: 10.1093/nar/8.19.4321 CrossRefPubMedGoogle Scholar
  23. Nugent GD, Ten Have M, van der Gulik A, Dix PJ, Uijtewaal BA, Mordhorst AP (2005) Plastid transformants of tomato selected using mutations affecting ribosome structure. Plant Cell Rep 24:341–349. doi: 10.1007/s00299-005-0930-3 CrossRefPubMedGoogle Scholar
  24. O’Neill C, Horvath GV, Horvath E, Dix PJ, Medgyesy P (1993) Chloroplast transformation in plants: polyethylene glycol (PEG) treatment of protoplasts is an alternative to biolistic delivery systems. Plant J 3:729–738. doi: 10.1111/j.1365-313X.1993.00729.x CrossRefPubMedGoogle Scholar
  25. Rotino GL, Gleddie S (1990) Transformation of eggplant (Solanum melongena L.) using a binary Agrobacterium tumefaciens vector. Plant Cell Rep 9:26–29. doi: 10.1007/BF00232129 CrossRefGoogle Scholar
  26. Ruf S, Hermann M, Berger IJ, Carrer H, Bock R (2001) Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nat Biotechnol 19:870–875. doi: 10.1038/nbt0901-870 CrossRefPubMedGoogle Scholar
  27. Sharma RK, Bock R, Bansal KC (2005) Plastid transformation: safer alternative to transgenic plants. Physiol Mol Biol Plants 11:179–185Google Scholar
  28. Skarjinskaia M, Svab Z, Maliga P (2003) Plastid transformation in Lesquerella fendleri, an oilseed Brassicacea. Transgenic Res 12:115–122. doi: 10.1023/A:1022110402302 CrossRefPubMedGoogle Scholar
  29. Svab Z, Maliga P (1993) High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc Natl Acad Sci USA 90:913–917. doi: 10.1073/pnas.90.3.913 CrossRefPubMedGoogle Scholar
  30. Svab Z, Hajdukiewicz P, Maliga P (1990) Stable transformation of plastids in higher plants. Proc Natl Acad Sci USA 87:8526–8530. doi: 10.1073/pnas.87.21.8526 CrossRefPubMedGoogle Scholar
  31. Verma D, Daniell H (2007) Chloroplast vector systems for biotechnology applications. Plant Physiol 145:1129–1143. doi: 10.1104/pp.107.106690 CrossRefPubMedGoogle Scholar
  32. Wurbs D, Ruf S, Bock R (2007) Contained metabolic engineering in tomatoes by expression of carotenoid biosynthesis genes from the plastid genome. Plant J 49:276–288. doi: 10.1111/j.1365-313X.2006.02960.x CrossRefPubMedGoogle Scholar
  33. Zoubenko OV, Allison LA, Svab Z, Maliga P (1994) Efficient targeting of foreign genes into the tobacco plastid genome. Nucleic Acids Res 22:3819–3824. doi: 10.1093/nar/22.19.3819 CrossRefPubMedGoogle Scholar
  34. Zubko MK, Zubko EI, van Zuilen K, Meyer P, Day A (2004) Stable transformation of petunia plastids. Transgenic Res 13:523–530. doi: 10.1007/s11248-004-2374-x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.National Research Centre on Plant BiotechnologyIndian Agricultural Research InstituteNew DelhiIndia
  2. 2.Department of Plant Pathology, 201F Plant Science BuildingUniversity of KentuckyLexingtonUSA

Personalised recommendations