Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Testing coexistence and genetic containment for an autogamous crop

  • 108 Accesses

  • 4 Citations

Abstract

Is there any risk that the threshold for admixture of genetically modified seeds in the harvest of a conventional cultivar, 0.9% in Europe, will be exceeded in the case of inbreeder crops? Using herbicide-resistant foxtail millet, Setaria italica, as a model of a preferentially autogamous crop, such as wheat and rice, field experiments show that genotype admixture due to pollen flow between adjacent fields is about 0.03% on average for the 10 adjacent meters, and 10 times less in the next 20-m lane. In the case of a maternally inherited resistance gene, the admixture rate is at least 100 times lower. Recessive herbicide resistance has also been tested but would be efficient only if the agreed coexistence rules were based on phenotype detection.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. Azhagiri AK, Maliga P (2007) Exceptional paternal inheritance of plastids in Arabidopsis suggests that low-frequency leakage of plastids via pollen may be universal in plants. Plant J 52:817–823. doi:10.1111/j.1365-313X.2007.03278.x

  2. Daniell H (2002) Molecular strategies for gene containment in transgenic crops. Nat Biotechnol 20:581–586. doi:10.1038/nbt0602-581

  3. Darmency H (1994) Genetics of herbicide resistance in weeds and crops. In: Powles SB, Holtum JA (eds) Herbicide resistance in plants: biology and biochemistry. Lewis, Boca Raton, pp 263–297

  4. Darmency H, Pernès J (1985) Use of wild Setaria viridis (L.) Beauv. to improve triazine resistance in cultivated S. italica (L.) by hybridization. Weed Res 25:175–179. doi:10.1111/j.1365-3180.1985.tb00633.x

  5. Jia X, Zhang Z, Liu Y, Zhang C, Shi Y, Song Y, Wang T, Li Y (2009) Development and genetic mapping of SSR markers in foxtail millet (Setaria italica (L.) P. Beauv.). Theor Appl Genet 118:821–829. doi:10.1007/s00122-008-0942-9

  6. Lee D, Natesan E (2006) Evaluating genetic containment strategies for transgenic plants. Trends Biotechnol 24:109–114. doi:10.1016/j.tibtech.2006.01.006

  7. Loureiro I, Escorial MC, Garcia-Baudin JM, Gonzalez-Andujar JL, Chueca MC (2007) Wheat pollen dispersal under semi-arid field conditions: potential outcrossing with Triticum aestivum and Triticum turgidum. Euphytica 156:25–37. doi:10.1007/s10681-006-9345-7

  8. Matus-Cadiz MA, Hucl P, Dupuis B (2007) Pollen-mediated gene flow in wheat at the commercial scale. Crop Sci 47:573–581

  9. Messéan A, Angevin F, Gómez-Barbero M, Menrad K, Rodríguez-Cerezo M (2006) New cases studies on the coexistence of GM and non-GM crops in European agriculture. Technical Report EUR 22102 EN, Eur Com

  10. Messeguer J, Fogher C, Guiderdoni E, Marfà V, Català MM, Baldi G, Melé E (2001) Field assessments of gene flow from transgenic to cultivated rice (Oryza sativa L.) using a herbicide resistance gene as tracer marker. Theor Appl Genet 103:1151–1159. doi:10.1007/s001220100713

  11. Rong J, Lu BR, Song Z, Su J, Snow AA, Zhang X, Sun S, Chen R, Wang F (2007) Dramatic reduction of crop-to-crop gene flow within a short distance from transgenic rice fields. New Phytol 173:346–353. doi:10.1111/j.1469-8137.2006.01906.x

  12. Sabba RP, Ray IM, Lownds N, Sterling TM (2003) Inheritance of resistance to clopyralid and picloram in yellow starthistle (Centaurea solstitialis L.) is controlled by a single nuclear recessive gene. J Hered 94:523–527. doi:10.1093/jhered/esg101

  13. Shi Y, Wang T, Li Y, Darmency H (2008) Impact of transgene inheritance on the mitigation of gene flow between crops and their wild relatives: the example of foxtail millet. Genetics 180:969–975. doi:10.1534/genetics.108.092809

  14. Shivrain VK, Burgos NR, Anders MM, Rajguru SN, Moore J, Sales MA (2007) Gene flow between Clearfield™ rice and red rice. Crop Prot 26:349–356. doi:10.1016/j.cropro.2005.09.019

  15. Waines JG, Hedge SG (2003) Intraspecific gene flow in bread wheat as affected by reproductive biology and pollination ecology of wheat flowers. Crop Sci 43:451–463

  16. Wang T, Darmency H (1997) Inheritance of sethoxydim resistance in foxtail millet, Setaria italica (L.) Beauv. Euphytica 94:69–73. doi:10.1023/A:1002989725995

  17. Wang T, Fleury A, Ma J, Darmency H (1996) Genetic control of dinitroaniline resistance in foxtail millet (Setaria italica). J Hered 87:423–426

  18. Wang T, Chen HB, Reboud X, Darmency H (1997) Pollen-mediated gene flow in an autogamous crop: Foxtail millet (Setaria italica). Plant Breed 116:579–583. doi:10.1111/j.1439-0523.1997.tb02193.x

  19. Wang T, Li Y, Shi Y, Reboud X, Darmency H, Gressel J (2004) Low frequency transmission of a plastid-encoded trait in Setaria italica. Theor Appl Genet 108:315–320. doi:10.1007/s00122-003-1424-8

  20. Yoshimura Y, Matsuo K, Yasuda K (2006) Gene flow from GM glyphosate-tolerant to conventional soybeans under field conditions in Japan. Environ Biosafety Res 5:169–173. doi:10.1051/ebr:2007003

Download references

Acknowledgments

We are indebted to Prof. Z. Zhao and the millet research group of Zhangjiakou Institute of Agriculture Sciences for advice and field experiment assistance. This research was supported by the European Commission contract INCO-DC (no. ERB-IC18-CT-98-0391) and a consecutive project from the Chinese Ministry Of Science and Technology (grants no. 2004BA525B04 and 2006BAD13B03).

Author information

Correspondence to Henri Darmency.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, T., Shi, Y., Li, Y. et al. Testing coexistence and genetic containment for an autogamous crop. Transgenic Res 18, 809–813 (2009). https://doi.org/10.1007/s11248-009-9270-3

Download citation

Keywords

  • Gene flow
  • Herbicide resistance
  • Coexistence
  • Maternal
  • Recessive
  • Seed admixture
  • Transgenic
  • Setaria italica