Transgenic Research

, Volume 18, Issue 5, pp 801–808 | Cite as

Gene expression profiles of MON810 and comparable non-GM maize varieties cultured in the field are more similar than are those of conventional lines

  • Anna Coll
  • Anna Nadal
  • Rosa Collado
  • Gemma Capellades
  • Joaquima Messeguer
  • Enric Melé
  • Montserrat Palaudelmàs
  • Maria PlaEmail author
Brief Communication


Maize is a major food crop and genetically modified (GM) varieties represented 24% of the global production in 2007. Authorized GM organisms have been tested for human and environmental safety. We previously used microarrays to compare the transcriptome profiles of widely used commercial MON810 versus near-isogenic varieties and reported differential expression of a small set of sequences in leaves of in vitro cultured plants of AristisBt/Aristis and PR33P67/PR33P66 (Coll et al. 2008). Here we further assessed the significance of these differential expression patterns in plants grown in a real context, i.e. in the field. Most sequences that were differentially expressed in plants cultured in vitro had the same expression values in MON810 and comparable varieties when grown in the field; and no sequence was found to be differentially regulated in the two variety pairs grown in the field. The differential expression patterns observed between in vitro and field culture were similar between MON810 and comparable varieties, with higher divergence between the two conventional varieties. This further indicates that MON810 and comparable non-GM varieties are equivalent except for the introduced character.


GMO (Genetically Modified Organism) MON810 Maize Field Unintended effects Expression profile 



Complementary DNA.


Certified reference material.


European Food Safety Authority.


European Union.


Genetically modified.


Genetically modified organism.


Institute for Reference Materials and Measurements.


International Service for the Acquisition of Agri-biotech Applications.


Messenger RNA.


Optical density.

Real-time RT-PCR

Reverse transcription coupled to real-time polymerase chain reaction.


Vegetative two-leaf stage.


Tasseling stage.



We specially thank T. Esteve (CRAG), J. Serra and J. Salvia (E. E. A. Mas Badia) for valuable suggestions. This work was financially supported by the Spanish MEC project with ref. AGL2007-65903/AGR. AC received a studentship from the Generalitat de Catalunya (2005FI 00144).


  1. Afreen F, Zobayed SMA, Kubota C, Kozai T (2000) Physiology of in vitro plantlets grown photoautotrophically. In: Kubota C, Chun C (eds) Transplant production in the 21st century. Kluwer Academic Publishers, The Netherlands, pp 238–246Google Scholar
  2. Baker JM, Hawkins ND, Ward JL, Lovegrove A, Napier JA, Shewry PR, Beale MH (2006) A metabolomic study of substantial equivalence of field-grown genetically modified wheat. Plant Biotechnol J 4:381–392. doi: 10.1111/j.1467-7652.2006.00197.x PubMedCrossRefGoogle Scholar
  3. Batista R, Saibo N, Lourenco T, Oliveira MM (2008) Microarray analyses reveal that plant mutagenesis may induce more transcriptomic changes than transgene insertion. Proc Natl Acad Sci USA 105:3640–3645. doi: 10.1073/pnas.0707881105 PubMedCrossRefGoogle Scholar
  4. Baudo MM, Lyons R, Powers S, Pastori GM, Edwards KJ, Holdsworth MJ, Shewry PR (2006) Transgenesis has less impact on the transcriptome of wheat grain than conventional breeding. Plant Biotechnol J 4:369–380. doi: 10.1111/j.1467-7652.2006.00193.x PubMedCrossRefGoogle Scholar
  5. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300Google Scholar
  6. Bradford KJ, Van Deynze A, Gutterson N, Parrott W, Strauss SH (2005) Regulating transgenic crops sensibly: lessons from plant breeding, biotechnology and genomics. Nat Biotechnol 23:439–444. doi: 10.1038/nbt1084 PubMedCrossRefGoogle Scholar
  7. Catchpole GS, Beckmann M, Enot DP, Mondhe M, Zywicki B, Taylor J, Hardy N, Smith A, King RD, Kell DB, Fiehn O, Draper J (2005) Hierarchical metabolomics demonstrates substantial compositional similarity between genetically modified and conventional potato crops. Proc Natl Acad Sci USA 102:14458–14462. doi: 10.1073/pnas.0503955102 PubMedCrossRefGoogle Scholar
  8. Cellini F, Chesson A, Colquhoun I, Constable A, Davies HV, Engel KH, Gatehouse AM, Karenlampi S, Kok EJ, Leguay JJ, Lehesranta S, Noteborn HP, Pedersen J, Smith M (2004) Unintended effects and their detection in genetically modified crops. Food Chem Toxicol 42:1089–1125. doi: 10.1016/j.fct.2004.02.003 PubMedCrossRefGoogle Scholar
  9. Chassy B, Egnin M, Gao Y, Glenn K, Kleter GA, Nestel P, Newell-McGloughlin M, Phipps RH, Shillito R (2008) Nutritional and safety assessments of foods and feeds nutritionally improved through biotechnology: case studies. Comp Rev Food Sci Food safety 7:65–74CrossRefGoogle Scholar
  10. Cheng KC, Beaulieu J, Iquira E, Belzile FJ, Fortin MG, Stromvik MV (2008) Effect of transgenes on global gene expression in soybean is within the natural range of variation of conventional cultivars. J Agric Food Chem 56:3057–3067. doi: 10.1021/jf073505i PubMedCrossRefGoogle Scholar
  11. Coll A, Nadal A, Palaudelmàs M, Messeguer J, Melé E, Puigdomènech P, Pla M (2008) Lack of repeatable differential expression patterns between MON810 and comparable commercial varieties of maize. Plant Mol Biol 68:105–117. doi: 10.1007/s11103-008-9355-z PubMedCrossRefGoogle Scholar
  12. Dhanaraj AL, Alkharouf NW, Beard HS, Chouikha IB, Matthews BF, Wei H, Arora R, Rowland LJ (2007) Major differences observed in transcript profiles of blueberry during cold acclimation under field and cold room conditions. Planta 225:735–751. doi: 10.1007/s00425-006-0382-1 PubMedCrossRefGoogle Scholar
  13. Dubouzet JG, Ishihara A, Matsuda F, Miyagawa H, Iwata H, Wakasa K (2007) Integrated metabolomic and transcriptomic analyses of high-tryptophan rice expressing a mutant anthranilate synthase alpha subunit. J Exp Bot 58:3309–3321. doi: 10.1093/jxb/erm179 PubMedCrossRefGoogle Scholar
  14. EFSA GMO Panel (2008) Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials. Food Chem Toxicol 46(Supplement 1):S2–S70Google Scholar
  15. Fernandes J, Morrow DJ, Casati P, Walbot V (2008) Distinctive transcriptome responses to adverse environmental conditions in Zea mays L. Plant Biotechnol J 6:782–798. doi: 10.1111/j.1467-7652.2008.00360.x PubMedCrossRefGoogle Scholar
  16. Griffiths BS, Heckmann LH, Caul S, Thompson J, Scrimgeour C, Krogh PH (2007) Varietal effects of eight paired lines of transgenic Bt maize and near-isogenic non-Bt maize on soil microbial and nematode community structure. Plant Biotechnol J 5:60–68. doi: 10.1111/j.1467-7652.2006.00215.x PubMedCrossRefGoogle Scholar
  17. Hernández M, Pla M, Esteve T, Prat S, Puigdomènech P, Ferrando A (2003) A specific real-time quantitative PCR detection system for event MON810 in maize YieldGard based on the 3′-transgene integration sequence. Transgenic Res 12:179–189. doi: 10.1023/A:1022979624333 PubMedCrossRefGoogle Scholar
  18. Hernández M, Esteve T, Pla M (2005) Real-time PCR based methods for quantitative detection of barley, rice, sunflower and wheat. J Agric Food Chem 53:7003–7009. doi: 10.1021/jf050797j PubMedCrossRefGoogle Scholar
  19. Herrero M, Ibáñez E, Martín-Alvarez PJ, Cifuentes A (2007) Analysis of chiral amino acids in conventional and transgenic maize. Anal Chem 79:5071–5077. doi: 10.1021/ac070454f PubMedCrossRefGoogle Scholar
  20. Ioset JR, Urbaniak B, Ndjoko-Ioset K, Wirth J, Martin F, Gruissem W, Hostettmann K, Sautter C (2007) Flavonoid profiling among wild type and related GM wheat varieties. Plant Mol Biol 65:645–654. doi: 10.1007/s11103-007-9229-9 PubMedCrossRefGoogle Scholar
  21. James C (2008) Global status of commercialized biotech/GM crops: 2008. ISAAA Briefs 39. ISAAA, Ithaca, NYGoogle Scholar
  22. Kok EJ, Keijer J, Kleter GA, Kuiper HA (2008) Comparative safety assessment of plant-derived foods. Regul Toxicol Pharmacol 50:98–113. doi: 10.1016/j.yrtph.2007.09.007 PubMedCrossRefGoogle Scholar
  23. Kristensen C, Morant M, Olsen CE, Ekstrom CT, Galbraith DW, Moller BL, Bak S (2005) Metabolic engineering of dhurrin in transgenic Arabidopsis plants with marginal inadvertent effects on the metabolome and transcriptome. Proc Natl Acad Sci USA 102:1779–1784. doi: 10.1073/pnas.0409233102 PubMedCrossRefGoogle Scholar
  24. Lehesranta SJ, Davies HV, Shepherd LV, Nunan N, McNicol JW, Auriola S, Koistinen KM, Suomalainen S, Kokko HI, Karenlampi SO (2005) Comparison of tuber proteomes of potato varieties, landraces, and genetically modified lines. Plant Physiol 138:1690–1699. doi: 10.1104/pp.105.060152 PubMedCrossRefGoogle Scholar
  25. Manetti C, Bianchetti C, Casciani L, Castro C, Di Cocco ME, Miccheli A, Motto M, Conti F (2006) A metabonomic study of transgenic maize (Zea mays) seeds revealed variations in osmolytes and branched amino acids. J Exp Bot 57:2613–2625. doi: 10.1093/jxb/erl025 PubMedCrossRefGoogle Scholar
  26. Parrott W (2005) The nature of change: towards sensible regulation of transgenic crops based on lessons from plant breeding, biotecnology and genomics. In: Proceedings of the 17th North American Biothecnology Council, Nahville, Tenn., June 27–29 2005. Available from: Accessed 4 Nov 2008
  27. Poerschmann J, Gathmann A, Augustin J, Langer U, Gorecki T (2005) Molecular composition of leaves and stems of genetically modified bt and near-isogenic non-bt maize—characterization of lignin patterns. J Environ Qual 34:1508–1518. doi: 10.2134/jeq2005.0070 PubMedCrossRefGoogle Scholar
  28. Roles AJ, Conner JK (2008) Fitness effects of mutation accumulation in a natural outbred population of wild radish (Raphanus raphanistrum): comparison of field and greenhouse environments. Evolution Int J Org Evolution 62:1066–1075. doi: 10.1111/j.1558-5646.2008.00354.x Google Scholar
  29. Ruebelt MC, Lipp M, Reynolds TL, Schmuke JJ, Astwood JD, DellaPenna D, Engel KH, Jany KD (2006) Application of two-dimensional gel electrophoresis to interrogate alterations in the proteome of gentically modified crops, 3-Assessing unintended effects. J Agric Food Chem 54:2169–2177. doi: 10.1021/jf052358q PubMedCrossRefGoogle Scholar
  30. Salvia J, López A, Capellades G, Betbesé JA, Serra J (2008) Varietats de blat de moro per a la campanya 2008. Dossier Tècnic 27:3–14Google Scholar
  31. Shepherd LV, McNicol JW, Razzo R, Taylor MA, Davies HV (2006) Assessing the potential for unintended effects in genetically modified potatoes perturbed in metabolic and developmental processes. Targeted analysis of key nutrients and anti-nutrients. Transgenic Res 15:409–425. doi: 10.1007/s11248-006-0012-5 PubMedCrossRefGoogle Scholar
  32. Shewry PR, Baudo M, Lovegrove A, Powers S, Napier JA, Ward JL, Baker JM, Beale MH (2007) Are GM and conventionally bred cereals really different? Trends Food Sci Technol 18:201–209. doi: 10.1016/j.tifs.2006.12.010 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Anna Coll
    • 1
  • Anna Nadal
    • 2
  • Rosa Collado
    • 1
  • Gemma Capellades
    • 3
  • Joaquima Messeguer
    • 4
  • Enric Melé
    • 4
  • Montserrat Palaudelmàs
    • 4
  • Maria Pla
    • 1
    Email author
  1. 1.Institut de Tecnologia Agroalimentària (INTEA)Universitat de GironaGironaSpain
  2. 2.Departament Genètica Molecular, Centre de Recerca en AgrigenòmicaCSIC-IRTA-UABBarcelonaSpain
  3. 3.Estació Experimental Fundació Mas Badia IRTACtra. de La TalladaLa Tallada, GironaSpain
  4. 4.Departament Genètica Vegetal, Centre de Recerca en AgrigenòmicaCSIC-IRTA-UABBarcelonaSpain

Personalised recommendations