Transgenic Research

, Volume 18, Issue 5, pp 757–767 | Cite as

The effect of root exudates from two transgenic insect-resistant cotton lines on the growth of Fusarium oxysporum

  • Xiao-gang Li
  • Biao Liu
  • Sondre Heia
  • Dou-dou Liu
  • Zheng-min Han
  • Ke-xin Zhou
  • Jin-jie Cui
  • Jun-yu Luo
  • Yang-ping Zheng
Original Paper

Abstract

The attenuation of disease resistance in transgenic insect-resistant cotton has become one of the important factors restricting cotton production in China. Two transgenic insect-resistant cotton lines and their parental conventional cotton lines were used as the testing materials. The effects of root exudates of these cotton lines on the spore germination and mycelial growth of Fusarium oxysporum were studied and the components, contents of amino acids and sugars were determined. The results showed that the resistance of the two insect-resistant cotton lines to F. oxysporum was inferior to the parental lines, and that their root exudates promoted fungal spore germination and mycelial growth. Considerable differences in the components and contents of both, amino acids and sugars were found between the root exudates of transgenic cotton lines and their parental lines, where the disease indices were highly correlated with the total amount of sugars in the root exudates.

Keywords

Transgenic insect-resistant cotton Root exudates Fusarium oxysporum Amino acids Sugars Disease resistance 

References

  1. Alabouvette C, Couteaudier Y, Lemanceau P (1986) Nature of intrageneric competition between pathogenic and non-pathogenic Fusarium in a wilt-suppressive soil. In: Swinburne TR (ed) Iron, siderophores and plant diseases, vol 117. Plenum Publishing Corporation, New York, pp 165–178Google Scholar
  2. Ammann K (2005) Effects of biotechnology on biodiversity: herbicide-tolerant and insect-resistant GM crops. Trends Biotechnol 23(8):387–394. doi:10.1016/j.tibtech.2005.06.008 CrossRefGoogle Scholar
  3. Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266. doi:10.1146/annurev.arplant.57.032905.105159 PubMedCrossRefGoogle Scholar
  4. Bertin C, Yang X, Weston LA (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256:67–83. doi:10.1023/A:1026290508166 CrossRefGoogle Scholar
  5. Booth JA (1969) Gossypaum harsutum tolerance to Verticillium dahliae infection I. Amino acids exudation from aseptic roots of tolerant and susceptible cotton. Phytopathology 59:43–46Google Scholar
  6. Buxton EW (1962) Root exudates from banana and their relationship to strains of the Fusarium causing Panama wilt. Ann App1 Bio1 50:269–282CrossRefGoogle Scholar
  7. Castaldini M, Turrini A, Sbrana C, Benedetti A, Marchionni M, Mocali S, Fabiani A, Landi S, Santomassimo F, Pietrangeli B, Nuti MP, Miclaus N, Giovannetti M (2005) Impact of Bt corn on rhizospheric and soil eubacterial communities and on beneficial mycorrhizal symbiosis in experimental microcosms. Appl Environ Microbiol 71:6719–6729. doi:10.1128/AEM.71.11.6719-6729.2005 PubMedCrossRefGoogle Scholar
  8. Chen DH, Ye GY, Yang CQ, Wu YK (2004) Effect after introducing Bacillus thuringiensis gene on nitrogen metabolism in cotton. Field Crops Res 87:235–244. doi:10.1016/j.fcr.2003.11.001 CrossRefGoogle Scholar
  9. Claudius GR, Mehrotra RS (1972) Root exudates from lentil (Lens culinaris medic) seedlings in relation to wilt disease. Plant Soil 38:315–320. doi:10.1007/BF00779015 CrossRefGoogle Scholar
  10. Clive J (2007) Global status of commercialized biotech/GM crops. In: ISAAA brief No.37. ISAAA. http://www.isaaa.org/resources/publications/briefs/37. Cited 20 July 2008
  11. Fang HY, Zhang G, Ma ZY (2003) Disease dynamic and resistance identification to Verticillium wilt of transgenic cotton. Cotton Sci 15(4):210–214Google Scholar
  12. Feng J, Cheng QY, Shi YL (1991) Study on root exudates of cotton seedling related to the cotton Fusarium Wilt disease. Cotton Sci 3(1):89–96Google Scholar
  13. Flores S, Saxena D, Stotzky G (2005) Transgenic Bt plants decompose less in soil than non-Bt plants. Soil Biol Biochem 37:1073–1082. doi:10.1016/j.soilbio.2004.11.006 CrossRefGoogle Scholar
  14. Giovannetti M, Sbrana C, Turrini A (2005) The impact of genetically modified crops on soil microbial communities. Biology forum. Riv Biol 98(3):393–417PubMedGoogle Scholar
  15. Griffiths BS, Geoghegan IE, Robertson WM (2000) Testing genetically engineered potato, producing the lections GNA and ConA, on non-target soil organisms and processes. J Appl Ecol 37:159–170. doi:10.1046/j.1365-2664.2000.00481.x CrossRefGoogle Scholar
  16. Gupta VVSR, Watson S (2004) Ecological impacts of GM cotton on soil biodiversity. In: Below-ground production of Bt by GM cotton and Bt cotton impacts on soil biological processes. CSIRO Land and Water. Available via DIALOG. http://www.environment.gov.au/settlements/biotechnology/publications/pubs/bt-cotton.pdf. Cited 20 July 2008
  17. Han X, Pan K, Wu FZ (2006a) Effect of root exudates from cucumber cultivars on the growth of Fusarium oxysporum. China Veg 5:13–15Google Scholar
  18. Han X, Wu FZ, Pan K (2006b) Review on the relation between the root exudates and soil-spread disease. Chin Agric Sci Bull 22(2):316–318Google Scholar
  19. Höper H, Steinberg C, Alabouvette C (1995) Involvement of clay type and pH in the mechanisms of soil suppressiveness to fusarium wilt of flax. Soil Biol Biochem 27:955–967. doi:10.1016/0038-0717(94)00238-V CrossRefGoogle Scholar
  20. Icoz I, Stotzky G (2008a) Fate and effects of insect-resistant Bt crops in soil ecosystems. Soil Biol Biochem 40:559–586. doi:10.1016/j.soilbio.2007.11.002 CrossRefGoogle Scholar
  21. Icoz I, Stotzky G (2008b) Cry3Bb1 protein from Bacillus thuringiensis in root exudates and biomass of transgenic corn does not persist in soil. Transgenic Res 17:609–620. doi:10.1007/s11248-007-9133-8 PubMedCrossRefGoogle Scholar
  22. Janvier C, Villeneuve F, Alabouvette C, Edel-Hermann V, Mateille T, Steinberg C (2007) Soil health through soil disease suppression: which strategy from descriptors to indicators? Soil Biol Biochem 39:1–23. doi:10.1016/j.soilbio.2006.07.001 CrossRefGoogle Scholar
  23. Knox OGG, Gupta VVSR, Nehl DB, Stiller WN (2007) Constitutive expression of Cry proteins in roots and border cells of transgenic cotton. Euphytica 154:83–90. doi:10.1007/s10681-006-9272-7 CrossRefGoogle Scholar
  24. Li YH, Cai YS, Wang WM (2005) Reason of red leaf blight breaking out at Xingzi County in Jiangxi Province and its countermeasures. Chin Cotton 6:40Google Scholar
  25. Liu SP, Wang RX, Zhang R, Guo Y, Yang ZW (1998) Effects of sugar and amino acid in root exudation of different resistant cotton cultivars on cotton Fusarium wilt pathogen. J Northeast Agric Univ 26(6):30–35Google Scholar
  26. Liu B, Zeng Q, Yan FM, Xu HG, Xu CR (2005a) Effects of transgenic plants on soil microorganisms. Plant Soil 271:1–23. doi:10.1007/s11104-004-1610-8 CrossRefGoogle Scholar
  27. Liu XL, Zhang ZB, Duan GQ, Wang XM, Zhang HJ (2005b) The effects of cotton varieties and soil nutrition on red leaf blight. Plant Prot 31(4):69–71Google Scholar
  28. Ma C (ed) (2007) Study on Fusarium oxysporum f.sp.vasinfectum and Verticillium dahliae Kleb. China Agricultural Publishing House, BeijingGoogle Scholar
  29. Naqvi SMA, Chauhan SK (1980) Effect of root exudates on the spore germination of rhizosphere and rhizoplane mycoflora of chilli (Capsicum annuum L.) cultivars. Plant Soil 55:397–402. doi:10.1007/BF02182700 CrossRefGoogle Scholar
  30. Nóbrega FM, Santos IS, Cunha MD, Carvalho AO, Gomes VM (2005) Antimicrobial proteins from cowpea root exudates: inhibitory activity against Fusarium oxysporum and purification of a chitinase-like protein. Plant Soil 272:223–232. doi:10.1007/s11104-004-4954-1 CrossRefGoogle Scholar
  31. Rui YK, Yi GX, Zhao J, Wang BM, Li ZH, Zhai ZX, He ZP, Li Q (2005) Changes of Bt toxin in the rhizosphere of transgenic Bt cotton and its influence on soil functional bacteria. World J Microbiol Biotechnol 21:1279–1284. doi:10.1007/s11274-005-2303-z CrossRefGoogle Scholar
  32. Saxena D, Stotzky G (2000) Insecticidal toxin from Bacillus thuringiensis is released from roots of transgenic Bt corn in vitro and in situ. FEMS Microbiol Ecol 33:35–39. doi:10.1111/j.1574-6941.2000.tb00724.x PubMedCrossRefGoogle Scholar
  33. Saxena D, Stotzky G (2001) Bt corn has a higher lignin content than non-Bt corn. Am J Bot 88:1704–1706. doi:10.2307/3558416 CrossRefGoogle Scholar
  34. Saxena D, Flores S, Stotzky G (1999) Transgenic plants: insecticidal toxin in root exudates from Bt corn. Nature 402:480PubMedGoogle Scholar
  35. Saxena D, Stewart CN, Altosaar I, Shu Q, Stotzky G (2004) Larvicidal Cry proteins from Bacillus thuringiensis are released in root exudates of transgenic B.thuringiensis corn, potato, and rice but not of B. thuringiensis canola, cotton, and tobacco. Plant Physiol Biochem 42:383–387. doi:10.1016/j.plaphy.2004.03.004 PubMedCrossRefGoogle Scholar
  36. Shen JB, Zhang FS (1999) Ecological effect of root exudates. J Agr Sci Technol 4(1):21–27Google Scholar
  37. Steinberg C, Whipps JM, Wood D, Fenlon J, Alabouvette C (1999) Mycelial development of Fusarium oxysporum in the vicinity of tomato roots. Mycol Res 103:769–778. doi:10.1017/S0953756298007710 CrossRefGoogle Scholar
  38. Steinkellner S, Mammerler R, Vierheilig H (2005) Microconidia germination of the tomato pathogen Fusarium oxysporum in the presence of root exudates. J Plant Interact 1(1):23–30. doi:10.1080/17429140500134334 CrossRefGoogle Scholar
  39. Steinkellner S, Mammerler R, Vierheilig H (2008) Germination of Fusarium oxysporum in root exudates from tomato plants challenged with different Fusarium oxysporum. Eur J Plant Pathol. doi:10.1007/s10658-008-9306-1
  40. Stone R (2008) China plans $3.5 billion GM crops initiative. Science 321:1279. doi:10.1126/science.321.5894.1279 PubMedCrossRefGoogle Scholar
  41. Stotzky G (2004) Persistence and biological activity in soil of the insecticidal proteins from Bacillus thuringiensis, especially from transgenic plants. Plant Soil 266:77–89. doi:10.1007/s11104-005-5945-6 CrossRefGoogle Scholar
  42. Stotzky G, Martin RT (1963) Soil mineralogy in relation to the spread of Fusarium wilt of banana in Central America. Plant Soil 18:317–337. doi:10.1007/BF01347232 CrossRefGoogle Scholar
  43. Turrini A, Sbrana C, Nuti MP, Pietrangeli B, Giovannetti M (2004) Development of a model system to assess the impact of genetically modified corn and aubergine plants on arbuscular mycorrhizal fungi. Plant Soil 266:69–75. doi:10.1007/s11104-005-4892-6 CrossRefGoogle Scholar
  44. Villányi I, Füzy A, Biró B (2006) Non-target microorganisms affected in the rhizosphere of the transgenic Bt corn. Paper presented at the V. Alps-Adria Scientific Workshop, Opatija, Croatia, 6–11 March 2006Google Scholar
  45. Wolfenbarger LL, Phifer PR (2000) The ecological risks and benefits of genetically engineered plants. Science 290:2088–2093. doi:10.1126/science.290.5499.2088 PubMedCrossRefGoogle Scholar
  46. Wu ZB (2000) Analysis on resistance of anti-insect and hybrid cotton cultivars (lines) at test area in Hubei Province. Hubei Agric Sci 5:36–38Google Scholar
  47. Wu XM, Gu BK, Xia ZJ, Fu ZP (1998) Disease index correction of cotton variety resistance to cotton Fusarium wilt and identification of insect-resistant cotton in disease resistance. Chin Cotton 25(2):16–17Google Scholar
  48. Wu YX, Shen XJ, Fang WP (2007) The effects of cotton root exudates on growth and development of Verticillium dahliae. Cotton Sci 19(4):286–290Google Scholar
  49. Xue K, Luo HF, Qi HY, Zhang HX (2005) Changes in soil microbial community structure associated with two types of genetically engineered plants analyzing by PLFA. J Environ Sci 17:130–134Google Scholar
  50. Xue K, Deng S, Wang RJ, Yan FM, Xu Ch R (2008) Leaf surface factors of transgenic Bt cotton associated with the feeding behaviors of cotton aphids: a case study on non-target effects. Sci China C Life Sci 51(2):1–12. doi:10.1007/s11427-008-0028-6 Google Scholar
  51. Yan FM, Xu CR, Bengtsson M, Witzgall P, Anderson P (2002) Volatile compositions of transgenic Bt cotton and their electrophysiological effects on the cotton bollworm. Acta Entomol Sin 45(4):425–429Google Scholar
  52. Yuan HY, Li HL, Wang Y, Fang WP, Wang ZY (2002) The root exudates of cotton cultivars with the different resistance and their effects on Verticillium dahliae. Acta Phytopathol Sin 2(2):127–131Google Scholar
  53. Zhang JX, Yuan HS, Wang SY (2006) Inhibition of the cupric complexes of amino acid on microsclerotia formation of Verticillium dahliae. Cotton Sci 18(1):58–59Google Scholar
  54. Zhu KQ, Feng ZL (2005) Analysis on disease resistance in anti-insect cotton cultivars (lines) in China. Chin Cotton 32(4):23Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Xiao-gang Li
    • 1
    • 2
  • Biao Liu
    • 2
  • Sondre Heia
    • 3
  • Dou-dou Liu
    • 1
    • 2
  • Zheng-min Han
    • 1
  • Ke-xin Zhou
    • 2
  • Jin-jie Cui
    • 4
  • Jun-yu Luo
    • 4
  • Yang-ping Zheng
    • 2
  1. 1.College of Forest Resources and EnvironmentNanjing Forestry UniversityNanjingChina
  2. 2.Nanjing Institute of Environmental SciencesMinistry of Environmental Protection of ChinaNanjingChina
  3. 3.GenØk – Center for BiosafetyTromsøNorway
  4. 4.Cotton Research InstituteChinese Academy of Agricultural SciencesAnyangChina

Personalised recommendations