Transgenic Research

, Volume 18, Issue 5, pp 707–718 | Cite as

Transplastomic expression of bacterial l-aspartate-α-decarboxylase enhances photosynthesis and biomass production in response to high temperature stress

Original Paper

Abstract

Metabolic engineering for β-alanine over-production in plants is expected to enhance environmental stress tolerance. The Escherichia colil-aspartate-α-decarboxylase (AspDC) encoded by the panD gene, catalyzes the decarboxylation of l-aspartate to generate β-alanine and carbon dioxide. The constitutive E. colipanD expression cassette was co-introduced with the constitutive, selectable aadA expression cassette into the chloroplast genome of tobacco via biolistic gene transfer and homologous recombination. Site specific integration of the E. colipanD expression cassette into the chloroplast genome and generation of homotransplastomic plants were confirmed by PCR and Southern blot analysis, respectively, following plant regeneration and germination of seedlings on selective media. PanD expression was verified by assays based on transcript detection and in vitro enzyme activity. The AspDC activities in transplastomic plants expressing panD were drastically increased by high-temperature stress. β-Alanine accumulated in transplastomic plants at levels four times higher than in wildtype plants. Analysis of chlorophyll fluorescence on plants subjected to severe heat stress at 45°C under light verified that photosystem II (PSII) in transgenic plants had higher thermotolerance than in wildtype plants. The CO2 assimilation of transplastomic plants expressing panD was more tolerant to high temperature stress than that of wildtype plants, resulting in the production of 30–40% more above ground biomass than wildtype control. The results presented indicate that chloroplast engineering of the β-alanine pathway by over-expression of the E. colipanD enhances thermotolerance of photosynthesis and biomass production following high temperature stress.

Keywords

Heat tolerance Plastid transformation β-Alanine over-production l-Aspartate-α-decarboxylase panD gene Photosynthesis 

References

  1. Albert A, Dhanaraj V, Genschel U, Khan G, Ramjee MK, Pulido R, Sibanda BL, Delft F, Witty M, Blundel TL, Smith AG, Abell C (1998) Crystal structure of aspartate decarboxylase at 2.2 Å resolution provides evidence for an ester in protein self-processing. Nat Struct Biol 5:289–293. doi:10.1038/nsb0498-289 PubMedCrossRefGoogle Scholar
  2. Allison LA, Simon LD, Maliga P (1996) Deletion of rpoB reveals a second distinct transcription system in plastids of higher plants. EMBO J 15:2802–2809PubMedGoogle Scholar
  3. Bukhov NG, Wiese C, Neimanis S, Heber U (1999) Heat sensitivity of chloroplasts and leaves: leakage of protons from thylakoids and reversible activation of cyclic electron transport. Photosynth Res 59:81–93CrossRefGoogle Scholar
  4. Cronan JE Jr (1980) β-Alanine synthesis in Escherichia coli. J Bacteriol 141:1291–1297PubMedGoogle Scholar
  5. Daniell H (1997) Transformation and foreign gene expression in plants mediated by microprojectile bombardment. Methods Mol Biol 62:453–488Google Scholar
  6. Enami I, Kitamura M, Tomo T, Isokawa Y, Ohta H, Katoh S (1994) Is the primary cause of thermal inactivation of oxygen evolution in spinach PSII membranes release of the extrinsic 33 kDa protein or Mn. Biochim Biophys Acta 1186:52–58. doi:10.1016/0005-2728(94)90134-1 CrossRefGoogle Scholar
  7. Fouad WM, Rathinasabapathi B (2006) Expression of bacterial l-aspartate-alpha-decarboxylase in tobacco increases beta-alanine and pantothenate levels and improves thermotolerance. Plant Mol Biol 60:495–505. doi:10.1007/s11103-005-4844-9 PubMedCrossRefGoogle Scholar
  8. Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92Google Scholar
  9. Goldschmidt-Clermont M (1991) Transgenic expression of aminoglycoside adenine transferase in the chloroplast: a selectable marker for site-directed transformation of Chlamydomonas. Nucleic Acids Res 19:4083–4089. doi:10.1093/nar/19.15.4083 PubMedCrossRefGoogle Scholar
  10. Havaux M, Tardy F (1996) Temperature-dependent adjustment of the thermal stability of photosystem II in vivo: possible involvement of xanthophyl-cycle pigments. Planta 198:324–333. doi:10.1007/BF00620047 CrossRefGoogle Scholar
  11. Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller KC, Gatzke N, Sung DY, Guy CL (2004) Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol 136:4159–4168. doi:10.1104/pp.104.052142 PubMedCrossRefGoogle Scholar
  12. Klapheck S, Zopes H, Levels HG, Bergmann L (1988) Properties and localization of the homoglutathione synthetase from Phaseolus coccineus leaves. Physiol Plant 74:733–739. doi:10.1111/j.1399-3054.1988.tb02045.x CrossRefGoogle Scholar
  13. Kota M, Daniell H, Varma S, Garczynski SF, Gould F, Moar WJ (1999) Overexpression of the Bacillus thuringiensis (Bt) Cry2Aa2 protein in chloroplasts confers resistance to plants against susceptible and Bt-resistant insects. Proc Natl Acad Sci USA 96:1840–1845. doi:10.1073/pnas.96.5.1840 PubMedCrossRefGoogle Scholar
  14. Kouril R, Lazár D, Ilík P, Skotnica J, Krchnák P, Naus J (2004) High temperature-induced chlorophyll fluorescence rise in plants at 40–50°C: experimental and theoretical approach. Photosynth Res 81:49–66. doi:10.1023/B:PRES.0000028391.70533.eb PubMedCrossRefGoogle Scholar
  15. Law RD, Crafts-Brandner SJ (1999) Inhibition and acclimation of photosynthesis to heat stress is closely correlated with activation of ribulose-1,5-bisphosphate carboxylase/oxygenase. Plant Physiol 120:173–181. doi:10.1104/pp.120.1.173 PubMedCrossRefGoogle Scholar
  16. Maliga P (2004) Plastid transformation in higher plants. Annu Rev Plant Biol 55:289–313. doi:10.1146/annurev.arplant.55.031903.141633 PubMedCrossRefGoogle Scholar
  17. Mayer RR, Cherry JH, Rhodes D (1990) Effects of heat shock on amino acid metabolism of cowpea cells. Plant Physiol 94:796–810. doi:10.1104/pp.94.2.796 PubMedCrossRefGoogle Scholar
  18. Mehta AD, Seidler NW (2005) Beta-alanine suppresses heat inactivation of lactate dehydrogenase. J Enzym Inhib Med Chem 20:199–203. doi:10.1080/14756360400020538 CrossRefGoogle Scholar
  19. Merkel WK, Nichols BP (1996) Characterization and sequence of the Escherichia coli panBCD gene cluster. FEMS Microbiol Lett 143:247–252. doi:10.1111/j.1574-6968.1996.tb08488.x PubMedCrossRefGoogle Scholar
  20. Moran JF, Iturbe-Ormaetxe I, Matamoros MA, Rubio MC, Clemente MR, Brewin IJ, Becana M (2000) Glutathione and homoglutathione synthetases of legume nodules: cloning, expression, and subcellular localization. Plant Physiol 124:1381–1392. doi:10.1104/pp.124.3.1381 PubMedCrossRefGoogle Scholar
  21. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  22. Pospísil P, Tyystjärvi E (1999) Molecular mechanism of high temperature-induced inhibition of acceptor side of photosystem II. Photosynth Res 32:55–66. doi:10.1023/A:1006369009170 CrossRefGoogle Scholar
  23. Raman SB, Rathinasabapathi B (2003) Beta-alanine N-methyltransferase of Limonium latifolium. cDNA cloning and functional expression of a novel N-methyltransferase implicated in the synthesis of the osmoprotectant beta-alanine betaine. Plant Physiol 132:1642–1651. doi:10.1104/pp.103.020453 PubMedCrossRefGoogle Scholar
  24. Raman SB, Rathinasabapathi B (2004) Pantothenate synthesis in plants. Plant Sci 167:961–968CrossRefGoogle Scholar
  25. Ramjee MK, Genschel U, Abell C, Smith AG (1997) Escherichia coli l-aspartate-α-decarboxylase: preprotein processing and observation of reaction intermediates by electrospray mass spectrometry. Biochem J 323:661–669PubMedGoogle Scholar
  26. Rathinasabapathi B, Sigua CA, Ho J, Gage DA (2000) Osmoprotectant β-alanine betaine synthesis in the Plumbaginaceae: S-adenosyl-l-methionine dependent N-methylation of β-alanine to its betaine is via N-methyl and N, N-dimethyl β-alanines. Physiol Plant 109:225–231. doi:10.1034/j.1399-3054.2000.100302.x CrossRefGoogle Scholar
  27. Rathinasabapathi B, Fouad WM, Sigua CA (2001) β-Alanine betaine synthesis in the Plumbaginaceae: purification and characterization of a trifunctional, S-adenosyl-l-methionine-dependent N-methyltransferase from Limonium latifolium leaves. Plant Physiol 126:1241–1249. doi:10.1104/pp.126.3.1241 PubMedCrossRefGoogle Scholar
  28. Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R (2004) When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134:1683–1696. doi:10.1104/pp.103.033431 PubMedCrossRefGoogle Scholar
  29. Salvucci ME, Osteryoung KW, Crafts-Brandner SJ, Vierling E (2001) Exceptional sensitivity of Rubisco activase to thermal denaturation in vitro and in vivo. Plant Physiol 127:1053–1064. doi:10.1104/pp.010357 PubMedCrossRefGoogle Scholar
  30. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor Laboratory, NY, 1659 p. ISBN 0-87969-3096Google Scholar
  31. SAS Institute Inc (2005) Version 9.1, SAS Institute Inc., Cary, NC, USAGoogle Scholar
  32. Schrader SM, Wise RR, Wacholtz WF, Ort DR, Sharkey TD (2004) Thylakoid membrane responses to moderately high leaf temperature in Pima cotton. Plant Cell Environ 27:725--735CrossRefGoogle Scholar
  33. Sharkry TD (2005) Effects of moderate heat stress on photosynthesis: importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. Plant Cell Environ 28:269–277. doi:10.1111/j.1365-3040.2005.01324.x CrossRefGoogle Scholar
  34. Sinsawat V, Leipner J, Stamp P, Fracheboud Y (2004) Effect of heat stress on the photosynthetic apparatus in maize (Zea mays L.) grown at control or high temperature. Environ Exp Bot 52:123–129. doi:10.1016/j.envexpbot.2004.01.010 CrossRefGoogle Scholar
  35. Srivastava A, Guissé B, Greppin U, Strasser RJ (1997) Regulation of antenna structure and electron transport in photosystem II of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient: OKJIP. Biochim Biophys Acta 1320:95–106. doi:10.1016/S0005-2728(97)00017-0 CrossRefGoogle Scholar
  36. Svab Z, Maliga P (1993) High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc Natl Acad Sci USA 90:913–917. doi:10.1073/pnas.90.3.913 PubMedCrossRefGoogle Scholar
  37. Viitanen PV, Devine AL, Khan MS, Deuel DL, Van Dyk DE, Daniell H (2004) Metabolic engineering of the chloroplast genome using the Echerichia coli ubiC gene reveals that chorismate is a readily abundant plant precursor for p-hydroxybenzoic acid biosynthesis. Plant Physiol 136:4048–4060. doi:10.1104/pp.104.050054 PubMedCrossRefGoogle Scholar
  38. White WH, Gunyuzlu PL, Toyn JH (2001) Saccharomyces cerevisiae is capable of de nova pantothenic acid biosynthesis involving a novel pathway of β-alanine production from spermine. J Biol Chem 276:10794–10800. doi:10.1074/jbc.M009804200 PubMedCrossRefGoogle Scholar
  39. Williamson JM, Brown GM (1979) Purification and properties of l-aspartate-α-decarboxylase, an enzyme that catalyzes the formation of β-alanine in Escherichia coli. J Biol Chem 254:8074–8082PubMedGoogle Scholar
  40. Wong Y, Taylor DE (1993) A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechniques 14:748–750Google Scholar
  41. Yang X, Liang Z, Lu C (2005) Genetic engineering of the biosynthesis of glycinebetaine enhances photosynthesis against high temperature stress in transgenic tobacco plants. Plant Physiol 138:2299–2309. doi:10.1104/pp.105.063164 PubMedCrossRefGoogle Scholar
  42. Yang X, Wen X, Gong H, Lu Q, Yang Z, Tang Y, Liang Z, Lu C (2007) Genetic engineering of the biosynthesis of glycinebetaine enhances thermotolerance of photosystem II in tobacco plants. Planta 225:719–933. doi:10.1007/s00425-006-0380-3 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics InstituteUniversity of Florida—IFASGainesvilleUSA

Personalised recommendations