Advertisement

Transgenic Research

, Volume 18, Issue 4, pp 649–654 | Cite as

Goat RSPO1 over-expression rescues sex-reversal in Rspo1-knockout XX mice but does not perturb testis differentiation in XY or sex-reversed XX mice

  • Laurine Buscara
  • Fatemeh Montazer-Torbati
  • Sead Chadi
  • Aurélie Auguste
  • Johann Laubier
  • Anne-Amandine Chassot
  • Lauriane Renault
  • Bruno Passet
  • José Costa
  • Maëlle Pannetier
  • Marthe Vilotte
  • Marie-Christine Chaboissier
  • Jean-Luc Vilotte
  • Eric Pailhoux
  • Fabienne Le Provost
Brief Communication

Abstract

RSPO1 is a newly discovered gene involved in sex differentiation. Two goat BAC clones encompassing the RSPO1 gene (gRSPO1) were injected into mouse oocytes and several transgenic lines derived. Both clones induced gRSPO1 over-expression in various tissues, including male and female gonads, with no obvious phenotype and normal sex-ratios. Introgression of the gRSPO1 transgene into a mouse RSPO1 knockout genotype resulted in the rescue of the fertility and the disappearance of the masculinized gonadic features of the females, demonstrating the functionality of the goat protein in a mouse context. On the contrary, over-expression of gRSPO1 within a mSRY or a gSRY-XX genotypes did not interfere with the SRY-induced male phenotype.

Keywords

Sex determination R-Spondin1 Transgenesis BAC 

Notes

Acknowledgments

This work was partially supported by the ANR-06, GenAnimal TEGOD.

References

  1. Bernard P, Harley VR (2007) Wnt4 action in gonadal development and sex determination. Int J Biochem Cell Biol 39:31–43. doi: 10.1016/j.biocel.2006.06.007 PubMedCrossRefGoogle Scholar
  2. Bernard P, Sim H, Knower K, Vilain E, Harley V (2008) Human SRY inhibits beta-catenin-mediated transcription. Int J Biochem Cell Biol 40:2889–2900. doi: 10.1016/j.biocel.2008.06.006 PubMedCrossRefGoogle Scholar
  3. Binnerts ME, Kim KA, Bright JM, Patel SM, Tran K, Zhou M, Leung JM, Liu Y, Lomas WE 3rd, Dixon M, Hazell SA, Wagle M, Nie WS, Tomasevic N, Williams J, Zhan X, Levy MD, Funk WD, Abo A (2007) R-Spondin1 regulates Wnt signaling by inhibiting internalization of LRP6. Proc Natl Acad Sci USA 104:14700–14705. doi: 10.1073/pnas.0702305104 PubMedCrossRefGoogle Scholar
  4. Brennan J, Capel B (2004) One tissue, two fates: molecular genetic events that underlie testis versus ovary development. Nat Rev Genet 5:509–521. doi: 10.1038/nrg1381 PubMedCrossRefGoogle Scholar
  5. Chassot AA, Ranc F, Gregoire EP, Roepers-Gajadien HL, Taketo MM, Camerino G, de Rooij DG, Schedl A, Chaboissier MC (2008) Activation of beta-catenin signaling by Rspo1 controls differentiation of the mammalian ovary. Hum Mol Genet 17:1264–1277. doi: 10.1093/hmg/ddn016 PubMedCrossRefGoogle Scholar
  6. Jeays-Ward K, Hoyle C, Brennan J, Dandonneau M, Alldus G, Capel B, Swain A (2003) Endothelial and steroidogenic cell migration are regulated by WNT4 in the developing mammalian gonad. Development 130:3663–3670. doi: 10.1242/dev.00591 PubMedCrossRefGoogle Scholar
  7. Jordan BK, Mohammed M, Ching ST, Delot E, Chen XN, Dewing P, Swain A, Rao PN, Elejalde BR, Vilain E (2001) Up-regulation of WNT-4 signaling and dosage-sensitive sex reversal in humans. Am J Hum Genet 68:1102–1109. doi: 10.1086/320125 PubMedCrossRefGoogle Scholar
  8. Kim KA, Kakitani M, Zhao J, Oshima T, Tang T, Binnerts M, Liu Y, Boyle B, Park E, Emtage P, Funk WD, Tomizuka K (2005) Mitogenic influence of human R-spondin1 on the intestinal epithelium. Science 309:1256–1259. doi: 10.1126/science.1112521 PubMedCrossRefGoogle Scholar
  9. Kim Y, Kobayashi A, Sekido R, DiNapoli L, Brennan J, Chaboissier MC, Poulat F, Behringer RR, Lovell-Badge R, Capel B (2006) Fgf9 and Wnt4 act as antagonistic signals to regulate mammalian sex determination. PLoS Biol 4:e187. doi: 10.1371/journal.pbio.0040187 PubMedCrossRefGoogle Scholar
  10. Kim KA, Wagle M, Tran K, Zhan X, Dixon MA, Liu S, Gros D, Korver W, Yonkovich S, Tomasevic N, Binnerts M, Abo A (2008) R-Spondin family members regulate the Wnt pathway by a common mechanism. Mol Biol Cell 19:2588–2596. doi: 10.1091/mbc.E08-02-0187 PubMedCrossRefGoogle Scholar
  11. Kocer A, Pinheiro I, Pannetier M, Renault L, Parma P, Radi O, Kim KA, Camerino G, Pailhoux E (2008) R-spondin1 and FOXL2 act into two distinct cellular types during goat ovarian differentiation. BMC Dev Biol 8:36. doi: 10.1186/1471-213X-8-36 PubMedCrossRefGoogle Scholar
  12. Koopman P, Gubbay J, Vivian N, Goodfellow P, Lovell-Badge R (1991) Male development of chromosomally female mice transgenic for Sry. Nature 351:117–121. doi: 10.1038/351117a0 PubMedCrossRefGoogle Scholar
  13. Maatouk DM, DiNapoli L, Alvers A, Parker KL, Taketo MM, Capel B (2008) Stabilization of beta-catenin in XY gonads causes male-to-female sex-reversal. Hum Mol Genet 17:2949–2955. doi: 10.1093/hmg/ddn193 PubMedCrossRefGoogle Scholar
  14. Mizusaki H, Kawabe K, Mukai T, Ariyoshi E, Kasahara M, Yoshioka H, Swain A, Morohashi K (2003) Dax-1 (dosage-sensitive sex reversal-adrenal hypoplasia congenita critical region on the X chromosome, gene 1) gene transcription is regulated by wnt4 in the female developing gonad. Mol Endocrinol 17:507–519. doi: 10.1210/me.2002-0362 PubMedCrossRefGoogle Scholar
  15. Nam JS, Turcotte TJ, Yoon JK (2007) Dynamic expression of R-spondin family genes in mouse development. Gene Expr Patterns 7:306–312. doi: 10.1016/j.modgep.2006.08.006 PubMedCrossRefGoogle Scholar
  16. Ottolenghi C, Pelosi E, Tran J, Colombino M, Douglass E, Nedorezov T, Cao A, Forabosco A, Schlessinger D (2007) Loss of Wnt4 and Foxl2 leads to female-to-male sex reversal extending to germ cells. Hum Mol Genet 16:2795–2804. doi: 10.1093/hmg/ddm235 PubMedCrossRefGoogle Scholar
  17. Pailhoux E, Vigier B, Chaffaux S, Servel N, Taourit S, Furet JP, Fellous M, Grosclaude F, Cribiu EP, Cotinot C, Vaiman D (2001) A 11.7-kb deletion triggers intersexuality and polledness in goats. Nat Genet 29:453–458. doi: 10.1038/ng769 PubMedCrossRefGoogle Scholar
  18. Pannetier M, Tilly G, Kocer A, Hudrisier M, Renault L, Chesnais N, Costa J, Le Provost F, Vaiman D, Vilotte JL, Pailhoux E (2006) Goat SRY induces testis development in XX transgenic mice. FEBS Lett 580:3715–3720. doi: 10.1016/j.febslet.2006.05.060 PubMedCrossRefGoogle Scholar
  19. Parma P, Radi O, Vidal V, Chaboissier MC, Dellambra E, Valentini S, Guerra L, Schedl A, Camerino G (2006) R-spondin1 is essential in sex determination, skin differentiation and malignancy. Nat Genet 38:1304–1309. doi: 10.1038/ng1907 PubMedCrossRefGoogle Scholar
  20. Schedl A, Larin Z, Montoliu L, Thies E, Kelsey G, Lehrach H, Schutz G (1993) A method for the generation of YAC transgenic mice by pronuclear microinjection. Nucleic Acids Res 21:4783–4787. doi: 10.1093/nar/21.20.4783 PubMedCrossRefGoogle Scholar
  21. Schibler L, Vaiman D, Oustry A, Guinec N, Dangy-Caye AL, Billault A, Cribiu EP (1998) Construction and extensive characterization of a goat bacterial artificial chromosome library with threefold genome coverage. Mamm Genome 9:119–124. doi: 10.1007/s003359900701 PubMedCrossRefGoogle Scholar
  22. Smith CA, Shoemaker CM, Roeszler KN, Queen J, Crews D, Sinclair AH (2008) Cloning and expression of R-Spondin1 in different vertebrates suggests a conserved role in ovarian development. BMC Dev Biol 8:72. doi: 10.1186/1471-213X-8-72 PubMedCrossRefGoogle Scholar
  23. Tomizuka K, Horikoshi K, Kitada R, Sugawara Y, Iba Y, Kojima A, Yoshitome A, Yamawaki K, Amagai M, Inoue A, Oshima T, Kakitani M (2008) R-spondin1 plays an essential role in ovarian development through positively regulating Wnt-4 signaling. Hum Mol Genet 17:1278–1291. doi: 10.1093/hmg/ddn036 PubMedCrossRefGoogle Scholar
  24. Uda M, Ottolenghi C, Crisponi L, Garcia JE, Deiana M, Kimber W, Forabosco A, Cao A, Schlessinger D, Pilia G (2004) Foxl2 disruption causes mouse ovarian failure by pervasive blockage of follicle development. Hum Mol Genet 13:1171–1181. doi: 10.1093/hmg/ddh124 PubMedCrossRefGoogle Scholar
  25. Vainio S, Heikkila M, Kispert A, Chin N, McMahon AP (1999) Female development in mammals is regulated by Wnt-4 signalling. Nature 397:405–409. doi: 10.1038/17068 PubMedCrossRefGoogle Scholar
  26. Wei Q, Yokota C, Semenov MV, Doble B, Woodgett J, He X (2007) R-spondin1 is a high affinity ligand for LRP6 and induces LRP6 phosphorylation and beta-catenin signaling. J Biol Chem 282:15903–15911. doi: 10.1074/jbc.M701927200 PubMedCrossRefGoogle Scholar
  27. Whitelaw CB, Springbett AJ, Webster J, Clark J (1993) The majority of G0 transgenic mice are derived from mosaic embryos. Transgenic Res 2:29–32. doi: 10.1007/BF01977678 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Laurine Buscara
    • 1
  • Fatemeh Montazer-Torbati
    • 2
  • Sead Chadi
    • 1
  • Aurélie Auguste
    • 2
  • Johann Laubier
    • 1
  • Anne-Amandine Chassot
    • 3
  • Lauriane Renault
    • 2
  • Bruno Passet
    • 1
  • José Costa
    • 1
  • Maëlle Pannetier
    • 2
  • Marthe Vilotte
    • 1
  • Marie-Christine Chaboissier
    • 3
  • Jean-Luc Vilotte
    • 1
  • Eric Pailhoux
    • 2
  • Fabienne Le Provost
    • 1
  1. 1.UR339, Laboratoire de Génétique Biochimique et de CytogénétiqueInstitut National de la Recherche AgronomiqueJouy-en-JosasFrance
  2. 2.UMR1198, Biologie du Développement et ReproductionInstitut National de la Recherche AgronomiqueJouy-en-JosasFrance
  3. 3.U636, Inserm et Laboratoire de Génétique du Développement Normal et PathologiqueUniversité de Nice-Sophia AntipolisNiceFrance

Personalised recommendations