Transgenic Research

, Volume 18, Issue 3, pp 445–453

Functional recombinant human anti-HAV antibody expressed in milk of transgenic mice

  • Ran Zhang
  • Man Rao
  • Chuan Li
  • Jingyuan Cao
  • Qinglin Meng
  • Min Zheng
  • Meili Wang
  • Yunping Dai
  • Mifang Liang
  • Ning Li
Original Paper

Abstract

Hepatitis A virus (HAV) is a wide spread pathogenic agent and is the common cause of acute Hepatitis A worldwide. Passive immunization of HAV plays an extremely important role in post-exposure prophylaxis with clinical applications often requiring large amounts of antibody. As an alternative to the in vitro production of recombinant proteins, expression of monoclonal antibodies (mAbs) in the milk of transgenic animals is currently used being associated with low production costs and high activity. In this paper, eight founder lines of transgenic mice were generated by co-microinjection of the two cassettes encoding the heavy- and light-chains of a neutralizing anti-HAV antibody, respectively. The expressed heavy- and light-chains of the mAb were correctly assembled and modified in the mammary gland as detected by western blotting. High expression levels of the antibody were achieved during the lactation period and found to be independent of the copy numbers of integrated transgenes. The highest level was up to 32.2 mg/ml. The binding specificity and neutralizing activity of the expressed mAb were assayed by ELISA and neutralizing test, showing that it is capable to neutralize the JN strain of Hepatitis A virus efficiently. Therefore, our results suggest that a large-scale and efficient production of the anti-HAV mAb in the milk of transgenic farm animals would be feasible in the future.

Keywords

Hepatitis A virus Monoclonal antibody Transgenic mice Milk 

References

  1. Cao JY, Liang MF, Meng QL, Wang XF, Xu YG, Guo KQ, Zhan MY, Bi SL, Li DX (2004) Baculovirus expression of two human recombinant neutralizing IgG monoclonal antibodies to hepatitis A virus. Chin J Exp Clin Virol 18:20–23Google Scholar
  2. Castilla J, Pintado B, Sola I, Sanchez-Morgado JM, Enjuanes L (1998) Engineering passive immunity in transgenic mice secreting virus-neutralizing antibodies in milk. Nat Biotechnol 16:349–354. doi:10.1038/nbt0498-349 PubMedCrossRefGoogle Scholar
  3. Castillo FJ (1999) Production of clinical grade monoclonal antibodies. In: Presentation at international business communications fifth annual antibody production & downstream processing conference, pp 17–19Google Scholar
  4. CDC (1999) Prevention of Hepatitis A through active or passive immunization: recommendations of the Advisory Committee on Immunization Practices (ACIP). Morb Mortal Wkly Rep 48(RR12):1–37Google Scholar
  5. CDC (2006) Prevention of Hepatitis A through active or passive immunization: recommendations of the Advisory Committee on Immunization Practices (ACIP). Morb Mortal Wkly Rep 55(RR07):1–23Google Scholar
  6. Chung JH, Bell AC, Felsenfeld G (1997) Characterization of the chicken beta-globin insulator. Proc Natl Acad Sci USA 94:575–580. doi:10.1073/pnas.94.2.575 PubMedCrossRefGoogle Scholar
  7. Clark AJ, Cowper A, Wallace R, Wright G, Simons JP (1992) Rescuing transgene expression by co-integration. Biotechnology (NY) 10:1450–1454. doi:10.1038/nbt1192-1450 CrossRefGoogle Scholar
  8. Di Giammarino L, Dienstag JL (2005) Hepatitis A—the price of progress. N Engl J Med 353:944–946. doi:10.1056/NEJMe058152 PubMedCrossRefGoogle Scholar
  9. Dove A (2002) Uncorking the biomanufacturing bottleneck. Nat Biotechnol 20:777–779. doi:10.1038/nbt0802-777 PubMedCrossRefGoogle Scholar
  10. Dyck MK, Lacroix D, Pothier F, Sirard MA (2003) Making recombinant proteins in animals—different systems, different applications. Trends Biotechnol 21:394–399. doi:10.1016/S0167-7799(03)00190-2 PubMedCrossRefGoogle Scholar
  11. Farid SS (2007) Process economics of industrial monoclonal antibody manufacture. J Chromatogr B Analyt Technol Biomed Life Sci 848:8–18. doi:10.1016/j.jchromb.2006.07.037 PubMedCrossRefGoogle Scholar
  12. Gottschalk U (2005) Downstream processing of monoclonal antibodies: from high dilution to high purity. BioPharm Int 18:42–52Google Scholar
  13. Hadler SC, Webster HM, Erben JJ, Swanson JE, Maynard JE (1980) Hepatitis A in day-care centers. A community-wide assessment. N Engl J Med 302:1222–1227PubMedGoogle Scholar
  14. Hogan B, Beddington R, Costantini F, Lacy E (1994) Manipulating the mouse embryo, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  15. Houdebine LM (2002) Antibody manufacture in transgenic animals and comparisons with other systems. Curr Opin Biotechnol 13:625–629. doi:10.1016/S0958-1669(02)00362-2 PubMedCrossRefGoogle Scholar
  16. Keefer CL (2004) Production of bioproducts through the use of transgenic animal models. Anim Reprod Sci 82–83:5–12. doi:10.1016/j.anireprosci.2004.04.010 PubMedCrossRefGoogle Scholar
  17. Keystone JS, Hershey JH (2008) The underestimated risk of hepatitis A and hepatitis B: benefits of an accelerated vaccination schedule. Int J Infect Dis 12:3–11. doi:10.1016/j.ijid.2007.04.012 PubMedCrossRefGoogle Scholar
  18. Kim SJ, Jang MH, Stapleton JT, Yoon SO, Kim KS, Jeon ES, Hong HJ (2004) Neutralizing human monoclonal antibodies to hepatitis A virus recovered by phage display. Virology 318:598–607. doi:10.1016/j.virol.2003.10.014 PubMedCrossRefGoogle Scholar
  19. Kolb AF, Pewe L, Webster J, Perlman S, Whitelaw CB, Siddell SG (2001) Virus-neutralizing monoclonal antibody expressed in milk of transgenic mice provides full protection against virus-induced encephalitis. J Virol 75:2803–2809. doi:10.1128/JVI.75.6.2803-2809.2001 PubMedCrossRefGoogle Scholar
  20. Kozlowski S, Swann P (2006) Current and future issues in the manufacturing and development of monoclonal antibodies. Adv Drug Deliv Rev 58:707–722. doi:10.1016/j.addr.2006.05.002 PubMedCrossRefGoogle Scholar
  21. Krugman S, Giles JP, Hammond J (1967) Infectious hepatitis. Evidence for two distinctive clinical, epidemiological, and immunological types of infection. JAMA 200:365–373. doi:10.1001/jama.200.5.365 PubMedCrossRefGoogle Scholar
  22. Larralde OG, Martinez R, Camacho F, Amin N, Aguilar A, Talavera A, Stott DI, Perez EM (2007) Identification of hepatitis A virus mimotopes by phage display, antigenicity and immunogenicity. J Virol Methods 140:49–58. doi:10.1016/j.jviromet.2006.10.015 PubMedCrossRefGoogle Scholar
  23. Limonta J, Pedraza A, Rodriguez A, Freyre FM, Barral AM, Castro FO, Lleonart R, Gracia CA, Gavilondo JV, de la Fuente J (1995) Production of active anti-CD6 mouse/human chimeric antibodies in the milk of transgenic mice. Immunotechnology 1:107–113. doi:10.1016/1380-2933(95)00010-0 PubMedCrossRefGoogle Scholar
  24. Lonberg N (2005) Human antibodies from transgenic animals. Nat Biotechnol 23:1117–1125. doi:10.1038/nbt1135 PubMedCrossRefGoogle Scholar
  25. MacGregor A, Kornitschuk M, Hurrell JG, Lehmann NI, Coulepis AG, Locarnini SA, Gust ID (1983) Monoclonal antibodies against hepatitis A virus. J Clin Microbiol 18:1237–1243PubMedGoogle Scholar
  26. Marasco WA, Sui J (2007) The growth and potential of human antiviral monoclonal antibody therapeutics. Nat Biotechnol 25:1421–1434. doi:10.1038/nbt1363 PubMedCrossRefGoogle Scholar
  27. Martin A, Lemon SM (2006) Hepatitis A virus: from discovery to vaccines. Hepatology 43:S164–S172. doi:10.1002/hep.21052 PubMedCrossRefGoogle Scholar
  28. Molina A, Valladares M, Magadan S, Sancho D, Viedma F, Sanjuan I, Gambon F, Sanchez-Madrid F, Gonzalez-Fernandez A (2003) The use of transgenic mice for the production of a human monoclonal antibody specific for human CD69 antigen. J Immunol Methods 282:147–158. doi:10.1016/j.jim.2003.08.007 PubMedCrossRefGoogle Scholar
  29. Newton DL, Pollock D, DiTullio P, Echelard Y, Harvey M, Wilburn B, Williams J, Hoogenboom HR, Raus JC, Meade HM, Rybak SM (1999) Antitransferrin receptor antibody-RNase fusion protein expressed in the mammary gland of transgenic mice. J Immunol Methods 231:159–167. doi:10.1016/S0022-1759(99)00154-4 PubMedCrossRefGoogle Scholar
  30. Reed LJ, Muench IL (1938) A simple method of estimating fifty percent endpoints. Am J Hyg 27:493–497Google Scholar
  31. Reichert JM, Rosensweig CJ, Faden LB, Dewitz MC (2005) Monoclonal antibody successes in the clinic. Nat Biotechnol 23:1073–1078. doi:10.1038/nbt0905-1073 PubMedCrossRefGoogle Scholar
  32. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  33. Sola I, Castilla J, Pintado B, Sanchez-Morgado JM, Whitelaw CB, Clark AJ, Enjuanes L (1998) Transgenic mice secreting coronavirus neutralizing antibodies into the milk. J Virol 72:3762–3772PubMedGoogle Scholar
  34. Tang B, Yu S, Zheng M, Ding F, Zhao R, Zhao J, Dai Y, Li N (2008) High level expression of a functional human/mouse chimeric anti-CD20 monoclonal antibody in milk of transgenic mice. Transgenic Res 727–732. doi:10.1007/s11248-007-9162-3
  35. Van Damme P, Van Herck K (2005) Effect of hepatitis A vaccination programs. JAMA 294:246–248. doi:10.1001/jama.294.2.246 PubMedCrossRefGoogle Scholar
  36. Victor JC, Monto AS, Surdina TY, Suleimenova SZ, Vaughan G, Nainan OV, Favorov MO, Margolis HS, Bell BP (2007) Hepatitis A vaccine versus immune globulin for postexposure prophylaxis. N Engl J Med 357:1685–1694. doi:10.1056/NEJMoa070546 PubMedCrossRefGoogle Scholar
  37. Wei JS, Tao R, Sun WW, Jia Q, Li C, Liang MF (2004) Purification and characterization of recombinant human anti-HAV monoclonal antibody. Chin J Biotechnol 20:257–261Google Scholar
  38. Whitelaw CB, Archibald AL, Harris S, McClenaghan M, Simons JP, Clark AJ (1991) Targeting expression to the mammary gland: intronic sequences can enhance the efficiency of gene expression in transgenic mice. Transgenic Res 1:3–13. doi:10.1007/BF02512991 PubMedCrossRefGoogle Scholar
  39. Winokur PL, Stapleton JT (1992) Immunoglobulin prophylaxis for hepatitis A. Clin Infect Dis 14:580–586PubMedGoogle Scholar
  40. Young MW, Okita WB, Brown EM, Curling JM (1997) Production of biopharmaceutical proteins in the milk of transgenic dairy animals. Biopharm Int 10:34–38Google Scholar
  41. Yu S, Liang M, Fan B, Xu H, Li C, Zhang Q, Li D, Tang B, Li S, Dai Y, Wang M, Zheng M, Yan B, Zhu Q, Li N (2006) Maternally derived recombinant human anti-hantavirus monoclonal antibodies are transferred to mouse offspring during lactation and neutralize virus in vitro. J Virol 80:4183–4186. doi:10.1128/JVI.80.8.4183-4186.2006 PubMedCrossRefGoogle Scholar
  42. Zhang W, Czupryn MJ (2002) Free sulfhydryl in recombinant monoclonal antibodies. Biotechnol Prog 18:509–513. doi:10.1021/bp025511z PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Ran Zhang
    • 1
  • Man Rao
    • 1
  • Chuan Li
    • 2
  • Jingyuan Cao
    • 2
  • Qinglin Meng
    • 2
  • Min Zheng
    • 3
  • Meili Wang
    • 3
  • Yunping Dai
    • 1
  • Mifang Liang
    • 2
  • Ning Li
    • 1
  1. 1.State Key Laboratory of AgrobiotechnologyChina Agricultural UniversityBeijingChina
  2. 2.State Key Laboratory for Infectious Disease Control and PreventionNational Institute for Viral Diseases Control and Prevention, China CDCBeijingChina
  3. 3.Beijing Genprotein Biotechnology CompanyBeijingChina

Personalised recommendations