Transgenic Research

, Volume 18, Issue 3, pp 467–482 | Cite as

Different subcellular localization and glycosylation for a functional antibody expressed in Nicotiana tabacum plants and suspension cells

  • Benoit De Muynck
  • Catherine Navarre
  • Yannick Nizet
  • Johannes Stadlmann
  • Marc BoutryEmail author
Original Paper


Genes encoding the heavy and light chains of LO-BM2, a therapeutic IgG antibody, were assembled in the tandem or inverted convergent orientation and expressed in Nicotiana tabacum plants and BY-2 suspension cells. The tandem construct allowed higher expression in both expression systems. A similar degradation pattern was observed for the secreted antibody recovered from the leaf intercellular fluid and BY-2 culture medium. Degradation increased with leaf age or culture time. Antibodies purified from leaf tissues and BY-2 cells were both functional. However, MS analysis of the N-glycosylation showed complex plant-type glycans to be the major type in the antibody purified from plants, whereas, oligomannosidic was the major glycosylation type in that purified from BY-2 cells. LO-BM2 was observed mainly in the endoplasmic reticulum of BY-2 cells while, in leaf cells, it was localized mostly to vesicles resembling prevacuolar compartments. These results and those from endoglycosidase H studies suggest that LO-BM2 is secreted from BY-2 cells more readily than from leaf cells where it accumulates in a post-Golgi compartment.


Monoclonal antibody Plant Tobacco Culture cells Proteolysis Vacuole Secretory pathway 



This work was supported financially by a grant from the European community (PHARMA-PLANTA integrated Project), the Région Wallonne (DGTRE/SUBCELL), the Inter-university Attraction Poles Program-Belgian Science Policy, and the Belgian fund for scientific research. BDM is the recipient of a fellowship from the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (Belgium).

Supplementary material

11248_2008_9240_MOESM_ESM.pdf (2.7 mb)
Supplementary material (PDF 2741 kb)


  1. An G (1985) High efficiency transformation of cultured tobacco cells. Plant Physiol 79:568–570. doi: 10.1104/pp.79.2.568 PubMedCrossRefGoogle Scholar
  2. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi: 10.1016/0003-2697(76)90527-3 PubMedCrossRefGoogle Scholar
  3. Brodzik R, Glogowska M, Bandurska K, Okulicz M, Deka D, Ko K, van der Linden J, Leusen JHW, Pogrebnyak N, Golovkin M, Steplewski Z, Koprowski H (2006) Plant-derived anti-Lewis Y mAb exhibits biological activities for efficient immunotherapy against human cancer cells. Proc Natl Acad Sci USA 103:8804–8809. doi: 10.1073/pnas.0603043103 PubMedCrossRefGoogle Scholar
  4. De Neve M, De Loose M, Jacobs A, Van Houdt H, Kaluza B, Weidle U, Van Montagu M, Depicker A (1993) Assembly of an antibody and its derived antibody fragment in Nicotiana and Arabidopsis. Transgenic Res 2:227–237. doi: 10.1007/BF01977353 PubMedCrossRefGoogle Scholar
  5. De Wilde C, De Neve M, De Rycke R, Bruyns AM, De Jaeger G, Van Montagu M, Depicker A, Engler G (1996) Intact antigen-binding MAK33 antibody and F-ab fragment accumulate in intercellular spaces of Arabidopsis thaliana. Plant Sci 114:233–241. doi: 10.1016/0168-9452(96)04331-2 CrossRefGoogle Scholar
  6. Dehoux JP, Hori S, Talpe S, Bazin H, Latinne D, Soares MP, Gianello P (2000) Specific depletion of preformed IgM natural antibodies by administration of anti-mu monoclonal antibody suppresses hyperacute rejection of pig to baboon renal xenografts. Transplantation 70:935–946. doi: 10.1097/00007890-200009270-00011 PubMedCrossRefGoogle Scholar
  7. Delannoy M, Alves G, Vertommen D, Ma J, Boutry M, Navarre C (2008) Identification of peptidases in Nicotiana tabacum leaf intercellular fluid. Proteomics 8:2285–2298. doi: 10.1002/pmic.200700507 PubMedCrossRefGoogle Scholar
  8. Doran PM (2006) Foreign protein degradation and instability in plants and plant tissue cultures. Trends Biotechnol 24:426–432. doi: 10.1016/j.tibtech.2006.06.012 PubMedCrossRefGoogle Scholar
  9. Drake PMW, Chargelegue DM, Vine ND, van Dolleweerd CJ, Obregon P, Ma JKC (2003) Rhizosecretion of a monoclonal antibody protein complex from transgenic tobacco roots. Plant Mol Biol 52:233–241. doi: 10.1023/A:1023909331482 PubMedCrossRefGoogle Scholar
  10. During K, Hippe S, Kreuzaler F, Schell J (1990) Synthesis and self-assembly of a functional monoclonal antibody in transgenic Nicotiana tabacum. Plant Mol Biol 15:281–293. doi: 10.1007/BF00036914 PubMedCrossRefGoogle Scholar
  11. Fischer R, Liao YC, Drossard J (1999) Affinity-purification of a TMV-specific recombinant full-size antibody from a transgenic tobacco suspension culture. J Immunol Methods 226:1–10. doi: 10.1016/S0022-1759(99)00058-7 PubMedCrossRefGoogle Scholar
  12. Floss DM, Falkenburg D, Conrad U (2007) Production of vaccines and therapeutic antibodies for veterinary applications in transgenic plants: an overview. Transgenic Res 16:315–332. doi: 10.1007/s11248-007-9095-x PubMedCrossRefGoogle Scholar
  13. Goderis I, De Bolle MFC, Francois I, Wouters PFJ, Broekaert WF, Cammue BPA (2002) A set of modular plant transformation vectors allowing flexible insertion of up to six expression units. Plant Mol Biol 50:17–27. doi: 10.1023/A:1016052416053 PubMedCrossRefGoogle Scholar
  14. Hellwig S, Drossard J, Twyman RM, Fischer R (2004) Plant cell cultures for the production of recombinant proteins. Nat Biotechnol 22:1415–1422. doi: 10.1038/nbt1027 PubMedCrossRefGoogle Scholar
  15. Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231. doi: 10.1126/science.227.4691.1229 CrossRefGoogle Scholar
  16. Horton RM, Cai ZL, Ho SN, Pease LR (1990) Gene-splicing by overlap extension–tailor-made genes using the polymerase chain-reaction. Biotechniques 8:528PubMedGoogle Scholar
  17. Hosy E, Duby G, Very AA, Costa A, Sentenac H, Thibaud JB (2005) A procedure for localisation and electrophysiological characterisation of ion channels heterologously expressed in a plant context. Plant Methods 1:14. doi: 10.1186/1746-4811-1-14 PubMedCrossRefGoogle Scholar
  18. Irons SL, Nuttall J, Floss DM, Frigerio L, Kotzer AM, Hawes C (2008) Fluorescent protein fusions to a human immunodeficiency virus monoclonal antibody reveal its intracellular transport through the plant endomembrane system. Plant Biotechnol J 6:649–662. doi: 10.1111/j.1467-7652.2008.00348.x PubMedCrossRefGoogle Scholar
  19. Ko K, Koprowski H (2005) Plant biopharming of monoclonal antibodies. Virus Res 111:93–100. doi: 10.1016/j.virusres.2005.03.016 PubMedCrossRefGoogle Scholar
  20. Ko KS, Tekoah Y, Rudd PM, Harvey DJ, Dwek RA, Spitsin S, Hanlon CA, Rupprecht C, Dietzschold B, Golovkin M, Koprowski H (2003) Function and glycosylation of plant-derived antiviral monoclonal antibody. Proc Natl Acad Sci USA 100:8013–8018. doi: 10.1073/pnas.0832472100 PubMedCrossRefGoogle Scholar
  21. Kolarich D, Altmann F (2000) N-glycan analysis by matrix-assisted laser desorption/ionization mass spectrometry of electrophoretically separated nonmammalian proteins: application to peanut allergen Ara h 1 and olive pollen allergen Ole e 1. Anal Biochem 285:64–75. doi: 10.1006/abio.2000.4737 PubMedCrossRefGoogle Scholar
  22. Lam SK, Tse YC, Robinson DG, Jiang L (2007) Tracking down the elusive early endosome. Trends Plant Sci 12:497–505. doi: 10.1016/j.tplants.2007.09.001 PubMedCrossRefGoogle Scholar
  23. Lohaus G, Pennewiss K, Sattelmacher B, Hussmann M, Muehling KH (2001) Is the infiltration-centrifugation technique appropriate for the isolation of apoplastic fluid? a critical evaluation with different plant species. Physiol Plant 111:457–465. doi: 10.1034/j.1399-3054.2001.1110405.x PubMedCrossRefGoogle Scholar
  24. Ma JK, Drake PM, Christou P (2003) The production of recombinant pharmaceutical proteins in plants. Nat Rev Genet 4:794–805. doi: 10.1038/nrg1177 PubMedCrossRefGoogle Scholar
  25. Ma JKC, Lehner T, Stabila P, Fux CI, Hiatt A (1994) Assembly of monoclonal-antibodies with Igg1 and Iga heavy-chain domains in transgenic tobacco plants. Eur J Immunol 24:131–138. doi: 10.1002/eji.1830240120 PubMedCrossRefGoogle Scholar
  26. Ma JKC, Chikwamba R, Sparrow P, Fischer R, Mahoney R, Twyman RM (2005) Plant-derived pharmaceuticals—the road forward. Trends Plant Sci 10:580–585. doi: 10.1016/j.tplants.2005.10.009 PubMedCrossRefGoogle Scholar
  27. Maeda H, Matsushita S, Eda Y, Kimachi K, Tokiyoshi S, Bendig MM (1991) Construction of reshaped human antibodies with HIV-neutralizing activity. Hum Antibodies Hybridomas 2:124–134PubMedGoogle Scholar
  28. Maliga P, Sz-Breznovits A, Marton L (1973) Streptomycin-resistant plants from callus culture of haploid tobacco. Nat New Biol 244:29–30PubMedGoogle Scholar
  29. Moriau L, Michelet B, Bogaerts P, Lambert L, Michel A, Oufattole M, Boutry M (1999) Expression analysis of two gene subfamilies encoding the plasma membrane H+-ATPase in Nicotiana plumbaginifolia reveals the major transport functions of this enzyme. Plant J 19:31–41. doi: 10.1046/j.1365-313X.1999.00495.x PubMedCrossRefGoogle Scholar
  30. Nagata T, Nemoto Y, Hasezawa S (1992) Tobacco BY-2 cell-line as the hela-cell in the cell biology of higher-plants. Int Rev Cytol 132:1–30. doi: 10.1016/S0074-7696(08)62452-3 CrossRefGoogle Scholar
  31. Navarre C, Delannoy M, Lefebvre B, Nader J, Vanham D, Boutry M (2006) Expression and secretion of recombinant outer-surface protein A from the Lyme disease agent, Borrelia burgdorferi, in Nicotiana tabacum suspension cells. Transgenic Res 15:325–335. doi: 10.1007/s11248-006-0002-7 PubMedCrossRefGoogle Scholar
  32. Ramessar K, Rademacher T, Sack M, Stadlmann J, Platis D, Stiegler G, Labrou N, Altmann F, Ma J, Stoger E, Capell T, Christou P (2008) Cost-effective production of a vaginal protein microbicide to prevent HIV transmission. Proc Natl Acad Sci USA 105:3727–3732. doi: 10.1073/pnas.0708841104 PubMedCrossRefGoogle Scholar
  33. Schillberg S, Fischer R, Emans N (2003) Molecular farming of recombinant antibodies in plants. Cell Mol Life Sci 60:433–445. doi: 10.1007/s000180300037 PubMedCrossRefGoogle Scholar
  34. Sharp JM, Doran PM (1999) Effect of bacitracin on growth and monoclonal antibody production by tobacco hairy roots and cell suspensions. Biotechnol Bioprocess Eng 4:253–258. doi: 10.1007/BF02933748 CrossRefGoogle Scholar
  35. Sharp JM, Doran PM (2001) Characterization of monoclonal antibody fragments produced by plant cells. Biotechnol Bioeng 73:338–346. doi: 10.1002/bit.1067 PubMedCrossRefGoogle Scholar
  36. Stevens LH, Stoopen GM, Elbers IJW, Molthoff JW, Bakker HAC, Lommen A, Bosch D, Jordi W (2000) Effect of climate conditions and plant developmental stage on the stability of antibodies expressed in transgenic tobacco. Plant Physiol 124:173–182. doi: 10.1104/pp.124.1.173 PubMedCrossRefGoogle Scholar
  37. Terry ME, Bonner BA (1980) An examination of centrifugation as a method of extracting an extracellular solution from peas, and its use for the study of indoleacetic acid-induced growth. Plant Physiol 66:321–325. doi: 10.1104/pp.66.2.321 PubMedCrossRefGoogle Scholar
  38. van der Fits L, Deakin EA, Hoge JHC, Memelink J (2000) The ternary transformation system: constitutive virG on a compatible plasmid dramatically increases Agrobacterium-mediated plant transformation. Plant Mol Biol 43:495–502. doi: 10.1023/A:1006440221718 PubMedCrossRefGoogle Scholar
  39. Van Engelen FA, Schouten A, Molthoff JW, Roosien J, Salinas J, Dirkse WG, Schots A, Bakker J, Gommers FJ, Jongsma MA, Bosch D, Stiekema WJ (1994) Coordinate expression of antibody subunit genes yields high-levels of functional antibodies in roots of transgenic tobacco. Plant Mol Biol 26:1701–1710. doi: 10.1007/BF00019485 PubMedCrossRefGoogle Scholar
  40. Voss A, Niersbach M, Hain R, Hirsch HJ, Liao YC, Kreuzaler F, Fischer R (1995) Reduced virus infectivity in Nicotiana-Tabacum secreting a Tmv-specific full-size antibody. Mol Breed 1:39–50. doi: 10.1007/BF01682088 CrossRefGoogle Scholar
  41. Wessel D, Flugge UI (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 138:141–143. doi: 10.1016/0003-2697(84)90782-6 PubMedCrossRefGoogle Scholar
  42. Wongsamuth R, Doran PM (1997) Production of monoclonal antibodies by tobacco hairy roots. Biotechnol Bioeng 54:401–415. doi: 10.1002/(SICI)1097-0290(19970605)54:5<401::AID-BIT1>3.0.CO;2-I PubMedCrossRefGoogle Scholar
  43. Zhao RM, Moriau L, Boutry M (1999) Expression analysis of the plasma membrane H+-ATPase pma4 transcription promoter from Nicotiana plumbaginifolia activated by the CaMV 35S promoter enhancer. Plant Sci 149:157–165. doi: 10.1016/S0168-9452(99)00155-7 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Benoit De Muynck
    • 1
  • Catherine Navarre
    • 1
  • Yannick Nizet
    • 2
  • Johannes Stadlmann
    • 3
  • Marc Boutry
    • 1
    Email author
  1. 1.Institut des Sciences de la VieUniversité catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.Unité d’immunologie expérimentaleUniversité catholique de LouvainWoluwe-Saint-LambertBelgium
  3. 3.Glycobiology Division, Department of ChemistryUniversity of Natural Resources and Applied Life SciencesViennaAustria

Personalised recommendations