Transgenic Research

, Volume 17, Issue 6, pp 1155–1162

A novel hairless mouse model on an atopic dermatitis-prone genetic background generated by receptor-mediated transgenesis

  • Toyoyuki Takada
  • Hiroshi Shitara
  • Kunie Matsuoka
  • Erika Kojima
  • Rie Ishii
  • Yoshiaki Kikkawa
  • Choji Taya
  • Hajime Karasuyama
  • Kenji Kohno
  • Hiromichi Yonekawa
Brief Communication

Abstract

Current mouse models for atopic dermatitis (AD) have a serious drawback, being the existence of dense hair on the body. Thus, a hairless animal model on an AD-prone genetic background will be a powerful tool to investigate the basis of and therapy for this complex disease. We applied the Toxin Receptor-mediated Cell Knockout (TRECK) method to generate a hairless transgenic (Tg) mice on the NC/Nga background, an AD-prone inbred strain. A minigene with the mouse Keratin71 (Krt71) promoter and human diphtheria toxin receptor, which intrinsically functions as the heparin-binding EGF-like growth factor, was introduced into the pronucleus of NC/Nga oocytes. Unexpectedly NCN24, one NC/Nga Tg line, showed a dominant hairless phenotype without diphtheria toxin administration. Furthermore, the atopic dermatitis-like predisposition and IgE elevation was observed in both NCN24 and the NC/Nga wildtype strain. NCN24 mice, which we have newly developed, will be useful to assess drugs for AD therapy, being able to monitor skin inflammation without shaving.

Keywords

Receptor-mediated transgenesis NC/Nga inbred strain Hairless mouse model Atopy 

Supplementary material

References

  1. Brooke HC (1926) Hairless mice. J Hered 17:173–174Google Scholar
  2. Gutermuth J, Ollert M, Ring J, Behrendt H, Jacob T (2004) Mouse models of atopic eczema critically evaluated. Int Arch Allergy Immunol 135:262–276PubMedCrossRefGoogle Scholar
  3. Hanifin JM (1993) Atopic dermatitis. In: Middleton E, Reed CE, Ellis EF, Adkinson NF, Yunginger JW, Busse WW (eds) Allergy principles and practice, 4th edn. Mosby, St. Louis, pp 1581–1604Google Scholar
  4. Harada Y, Matsuda Y, Shiomi N, Shiomi T (1995) Complementary DNA sequence and chromosomal localization of xpg, the mouse counterpart of human repair gene XPG/ERC5. Genomics 28:59–65PubMedCrossRefGoogle Scholar
  5. Hirano T, Miyajima H, Kitagawa H, Watanabe N, Azuma M, Taniguchi O, Hashimoto H, Hirose S, Yagita H, Furusawa S, Ovary Z, Okumura K (1988) Studies on murine IgE with monoclonal antibodies. I. Characterization of rat monoclonal anti-IgE antibodies and the use of these antibodies for determinations of serum IgE levels and for anaphylactic reactions. Int Arch Allergy Appl Immunol 85:47–54PubMedGoogle Scholar
  6. Kikkawa Y, Oyama A, Ishii R, Miura I, Amano T, Ishii Y, Yoshikawa Y, Masuya H, Wakana S, Shiroishi T, Taya C, Yonekawa H (2003) A small deletion hotspot in the type II keratin gene mK6irs1/Krt2-6g on mouse chromosome 15, a candidate for causing the wavy hair of the caracul (Ca) mutation. Genetics 165:721–733PubMedGoogle Scholar
  7. Kohara Y, Tanabe K, Matsuoka K, Kanda N, Matsuda H, Karasuyama H, Yonekawa H (2001) A major determinant quantitative-trait locus responsible for atopic dermatitis-like skin lesions in NC/Nga mice is located on chromosome 9. Immunogenetics 53:15–21PubMedCrossRefGoogle Scholar
  8. Kondo K, Nagami T, Teramoto S (1969) Differences in hematopoietic death among inbred strains of mice. In: Bond PV, Sugahara T (eds) Comparative cellular and species radiosensitivity. Igakushoin, Tokyo, pp 20–29Google Scholar
  9. Mak KK, Chan SY (2003) Epidermal growth factor as a biologic switch in hair growth cycle. J Biol Chem 278:26120–26126PubMedCrossRefGoogle Scholar
  10. Matsuda H, Watanabe N, Geba GP, Sperl J, Tsudzuki M, Hiroi J, Matsumoto M, Ushio H, Saito S, Askenase PW, Ra C (1997) Development of atopic dermatitis-like skin lesion with IgE hyperproduction in NC/Nga mice. Int Immunol 9:461–466PubMedCrossRefGoogle Scholar
  11. Naglich JG, Metherall JE, Russell DM, Eidels L (1992) Expression cloning of a diphtheria toxin receptor: identity with a heparin-binding EGF-like growth factor precursor. Cell 69:1051–1061PubMedCrossRefGoogle Scholar
  12. Panteleyev AA, Botchkareva NV, Sundberg JP, Christiano AM, Paus R (1999) The role of the hairless (hr) gene in the regulation of hair follicle catagen transformation. Am J Pathol 155:159–171PubMedGoogle Scholar
  13. Poirier C, Yoshiki A, Fujiwara K, Guenet JL, Kusakabe M (2002) Hague (Hag). A new mouse hair mutation with an unstable semidominant allele. Genetics 162:831–840PubMedGoogle Scholar
  14. Saito M, Iwawaki T, Taya C, Yonekawa H, Noda M, Inui Y, Mekada E, Kimata Y, Tsuru A, Kohno K (2001) Diphtheria toxin receptor-mediated conditional and targeted cell ablation in transgenic mice. Nat Biotechnol 19:19746–19750Google Scholar
  15. Sakai T, Kikkawa Y, Miura I, Inoue T, Moriwaki K, Shiroishi T, Satta Y, Takahata N, Yonekawa H (2005) Origins of mouse inbred strains deduced from whole-genome scanning by polymorphic microsatellite loci. Mamm Genome 16:11–19PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Toyoyuki Takada
    • 1
    • 2
  • Hiroshi Shitara
    • 1
  • Kunie Matsuoka
    • 1
    • 3
  • Erika Kojima
    • 4
  • Rie Ishii
    • 1
  • Yoshiaki Kikkawa
    • 1
    • 5
  • Choji Taya
    • 1
  • Hajime Karasuyama
    • 4
  • Kenji Kohno
    • 3
    • 6
  • Hiromichi Yonekawa
    • 1
    • 3
  1. 1.Department of Laboratory Animal ScienceThe Tokyo Metropolitan Institute of Medical Science (Rinshoken)TokyoJapan
  2. 2.Transdisciplinary Research Integration CenterResearch Organization of Information and SystemsTokyoJapan
  3. 3.PROBRAIN, Promotion of Basic Research Activities for Innovative BiosciencesTokyoJapan
  4. 4.Department of Immune RegulationTokyo Medical and Dental UniversityTokyoJapan
  5. 5.Department of Bioproduction, Faculty of BioindustryTokyo University of AgricultureAbashiriJapan
  6. 6.The Graduate School of Biological SciencesNara Institute of Science and TechnologyNaraJapan

Personalised recommendations