Transgenic Research

, Volume 18, Issue 1, pp 59–69 | Cite as

Expression of Dm-AMP1 in rice confers resistance to Magnaporthe oryzae and Rhizoctonia solani

  • Sanjay Jha
  • Harsukh G. Tank
  • Bishun Deo Prasad
  • Bharat B. Chattoo
Original Paper

Abstract

Magnaporthe oryzae and Rhizoctonia solani, are among the most important pathogens of rice, severely limiting its productivity. Dm-AMP1, an antifungal plant defensin from Dahlia merckii, was expressed in rice (Oryza sativa L. sp. indica cv. Pusa basmati 1) using Agrobacterium tumefaciens-mediated transformation. Expression levels of Dm-AMP1 ranged from 0.43% to 0.57% of total soluble protein in transgenic plants. It was observed that constitutive expression of Dm-AMP1 suppresses the growth of M. oryzae and R. solani by 84% and 72%, respectively. Transgenic expression of Dm-AMP1 was not accompanied by an induction of pathogenesis-related (PR) gene expression, indicating that the expression of DmAMP1 directly inhibits the pathogen. The results of in vitro, in planta and microscopic analyses suggest that Dm-AMP1 expression has the potential to provide broad-spectrum disease resistance in rice.

Keywords

DmAMP1 Magnaporthe oryzae Rhizoctonia solani Transgenic rice Plant-microbe interactions Defensins 

Notes

Acknowledgments

We thank Dr. B. Cammue, University of Leuven, Belgium, for providing the plasmid pFAJ3105. We also extend our thanks to Prof. R. N. Pandey, Anand Agricultural University, Anand, India, for providing cultures of R. solani. This work was supported by the grants from Department of Biotechnology, Ministry of Science and Technology, Government of India.

References

  1. Anderson NA (1982) The genetics and pathology of Rhizoctonia solani. Annu Rev Phytopathol 20:329–347. doi:10.1146/annurev.py.20.090182.001553 CrossRefGoogle Scholar
  2. Bi YM, Cammue BPA, Goodwin PH, KrishnaRaj S, Saxena PK (1999) Resistance to Botrytis cinerea in scented geranium transformed with a gene encoding the antimicrobial protein Ace-AMP1. Plant Cell Rep 18(10):835–840. doi:10.1007/s002990050670 CrossRefGoogle Scholar
  3. de Bolle MFC, Osborn RW, Goderi IJ, Noe L, Acland D, Hart CA et al (1996) Antimicrobial peptides from Mirabilis jalapa and Amaranthus caudatus: expression, processing, localization and biological activity in transgenic tobacco. Plant Mol Biol 31:993–1008. doi:10.1007/BF00040718 PubMedCrossRefGoogle Scholar
  4. Bonman JM, Mackill DJ (1988) Durable resistance to rice blast disease. Oryza 25:103–110Google Scholar
  5. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3 PubMedCrossRefGoogle Scholar
  6. Broekaert WF, Terras FR, Cammue BP, Osborn RW (1995) Plant defensins: novel antimicrobial peptides as components of the host defense system. Plant Physiol 108:1353–1358. doi:10.1104/pp.108.4.1353 PubMedCrossRefGoogle Scholar
  7. Chen DC, Yang BC, Kuo TT (1992) One-step transformation of yeast in stationary phase. Curr Genet 21:83–84. doi:10.1007/BF00318659 PubMedCrossRefGoogle Scholar
  8. Christensen AH, Quail P (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res 5:213–218. doi:10.1007/BF01969712 PubMedCrossRefGoogle Scholar
  9. Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version 2. Plant Mol Biol Rep 1:19–22. doi:10.1007/BF02712670 CrossRefGoogle Scholar
  10. Epple P, Apel K, Bohlmann H (1997) Overexpression of an endogenous thionin enhances resistance of arabidopsis against Fusarium oxysporum. Plant Cell 9:509–520PubMedCrossRefGoogle Scholar
  11. Francois IE, De Bolle MF, Dwyer G, Goderis IJ, Woutors PF, Verhaert PD et al (2002) Transgenic expression in Arabidopsis of a polyprotein construct leading to production of two different antimicrobial proteins. Plant Physiol 128:1346–1358. doi:10.1104/pp.010794 PubMedCrossRefGoogle Scholar
  12. Gao AG, Haikimi SM, Mittanck CA, Wu Y, Woerner BM, Stark DM et al (2000) Fungal pathogen protection in potato by expression of a plant defensin peptide. Nat Biotechnol 18:1307–1310. doi:10.1038/82436 PubMedCrossRefGoogle Scholar
  13. Gu Q, Kawata EE, Morse MJ, Wu HM, Cheung AY (1992) A flower-specific cDNA encoding a novel thionin in tobacco. Mol Gen Genet 234:89–96PubMedGoogle Scholar
  14. Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6(2):271–282. doi:10.1046/j.1365-313X.1994.6020271.x PubMedCrossRefGoogle Scholar
  15. Jach G, Gornhardt B, Mundy J, Logemann J, Pinsdorf E, Leah R et al (1995) Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco. Plant J 8(1):97–109. doi:10.1046/j.1365-313X.1995.08010097.x PubMedCrossRefGoogle Scholar
  16. Komari T, Hiei Y, Saito Y, Murai N, Kumashiro T (1996) Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J 10:165–174. doi:10.1046/j.1365-313X.1996.10010165.x PubMedCrossRefGoogle Scholar
  17. Logeman J, Schell J, Willmitzer L (1987) Improved method for the isolation of RNA from plant tissues. Ann Biochem 163:16–20. doi:10.1016/0003-2697(87)90086-8 CrossRefGoogle Scholar
  18. Mitchell DA, Marshall TK, Deschenes RJ (1993) Vectors for the inducible expression of glutathione S-transferase fusion proteins in yeast. Yeast 9:715–723. doi:10.1002/yea.320090705 PubMedCrossRefGoogle Scholar
  19. Mittler R, Shulaev V, Lam E (1995) Coordinated activation of programmed cell death and defense mechanisms in transgenic tobacco plants expressing a bacterial proton pump. Plant Cell 7:29–42CrossRefGoogle Scholar
  20. Osborn RW, De Samblanx GW, Thevissen K, Goderis I, Torrekens S, Van Leuven F et al (1995) Isolation and characterisation of plant defensins from seeds of Asteraceae, Fabaceae, Hippocastanaceae and Saxifragaceae. FEBS Lett 368:257–262. doi:10.1016/0014-5793(95)00666-W PubMedCrossRefGoogle Scholar
  21. Ou SH (1985) Rice Diseases, 2nd edn. Commonwealth Mycological Institute Publication, Kew, Surrey, UK, pp 280–282Google Scholar
  22. Patkar RN, Chattoo BB (2006) Transgenic indica rice expressing ns-LTP like protein shows enhanced resistance to both fungal and bacterial pathogens. Mol Breed 17:159–171. doi:10.1007/s11032-005-4736-3 CrossRefGoogle Scholar
  23. Sesma A, Osbourn AE (2004) The rice leaf blast pathogen undergoes developmental processes typical of root-infecting fungi. Nature 431:582–586. doi:10.1038/nature02880 PubMedCrossRefGoogle Scholar
  24. Terras FRG, Eggermont K, Kovaleva V, Raikhel NV, Osborn RW, Kester A et al (1995) Small cysteine-rich antifungal proteins from radish: their role in host defence. Plant Cell 7:573–588PubMedCrossRefGoogle Scholar
  25. Thevissen K, Ghazi A, de Samblanx GW, Brownlee C, Osborn RW, Broekaert WF (1996) Fungal membrane responses induced by plant defensins and thionins. J Biol Chem 271:15018–15025. doi:10.1074/jbc.271.25.15018 PubMedCrossRefGoogle Scholar
  26. Thevissen K, François IEJA, Takemoto JY, Ferket KKA, Meert EMK (1997) Specific, high affinity binding sites for an antifungal plant defensin on Neurospora crassa hyphae and microsomal membranes. J Biol Chem 272:32176–32181PubMedCrossRefGoogle Scholar
  27. Thevissen K, Cammue BP, Lemaire K, Winderickx J, Dickson RC, Lester RL et al (2000) A gene encoding a sphingolipid biosynthesis enzyme determines the sensitivity of Saccharomyces cerevisiae to an antifungal plant defensin from dahlia (Dahlia merckii). Proc Natl Acad Sci USA 97:9531–9536. doi:10.1073/pnas.160077797 PubMedCrossRefGoogle Scholar
  28. Thevissen K, Francois IE, Takemoto JY, Ferket KK, Meert EM, Cammue BP (2003) DmAMP1, an antifungal plant defensin from dahlia (Dahlia merckii), interacts with sphingolipids from Saccharomyces cerevisiae. FEMS Microbiol Lett 226:169–173. doi:10.1016/S0378-1097(03)00590-1 PubMedCrossRefGoogle Scholar
  29. Thomma BPHJ, Cammue BPA, Thevissen K (2002) Plant defensins. Planta 216:193–202. doi:10.1007/s00425-002-0902-6 PubMedCrossRefGoogle Scholar
  30. Turrini A, Sbrana C, Nuti MP, Pietrangeli BM, Giovannetti M (2004) Development of a model system to assess the impact of genetically modified corn and aubergine plants on abruscular mycorrhizal fungi. Plant Soil 266:69–75. doi:10.1007/s11104-005-4892-6 CrossRefGoogle Scholar
  31. Vitale A, Denecke J (1999) The endoplasmic reticulum-gateway of the secretory pathway. Plant Cell 11:615–628PubMedCrossRefGoogle Scholar
  32. Yun DJ, Bressan RA, Hasegawa PM (1997) Plant antifungal proteins. Plant Breed Rev 14:39–88Google Scholar
  33. Zhu YJ, Agbayani R, Moore PH (2007) Ectopic expression of Dahlia merckii defensin DmAMP1 improves papaya resistance to Phytophthora palmivora by reducing pathogen vigor. Planta 226(1):87. doi:10.1007/s00425-006-0471-1 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Sanjay Jha
    • 1
  • Harsukh G. Tank
    • 1
  • Bishun Deo Prasad
    • 1
  • Bharat B. Chattoo
    • 1
  1. 1.Department of Microbiology and Biotechnology Centre, Faculty of ScienceThe M S. University of BarodaVadodaraIndia

Personalised recommendations