Transgenic Research

, Volume 17, Issue 6, pp 1091–1102 | Cite as

Translational fusion of chloroplast-expressed human papillomavirus type 16 L1 capsid protein enhances antigen accumulation in transplastomic tobacco

  • Paolo Lenzi
  • Nunzia Scotti
  • Fiammetta Alagna
  • Maria L. Tornesello
  • Andrea Pompa
  • Alessandro Vitale
  • Angelo De Stradis
  • Luigi Monti
  • Stefania Grillo
  • Franco M. Buonaguro
  • Pal Maliga
  • Teodoro CardiEmail author
Original Paper


Human Papillomavirus (HPV) is the causal agent of cervical cancer, one of the most common causes of death for women. The major capsid L1 protein self-assembles in Virus Like Particles (VLPs), which are highly immunogenic and suitable for vaccine production. In this study, a plastid transformation approach was assessed in order to produce a plant-based HPV-16 L1 vaccine. Transplastomic plants were obtained after transformation with vectors carrying a chimeric gene encoding the L1 protein either as the native viral (L1v gene) or a synthetic sequence optimized for expression in plant plastids (L1pt gene) under control of plastid expression signals. The L1 mRNA was detected in plastids and the L1 antigen accumulated up to 1.5% total leaf proteins only when vectors included the 5′-UTR and a short N-terminal coding segment (Downstream Box) of a plastid gene. The half-life of the engineered L1 protein, determined by pulse-chase experiments, is at least 8 h. Formation of immunogenic VLPs in chloroplasts was confirmed by capture ELISA assay using antibodies recognizing conformational epitopes and by electron microscopy.


Plastid transformation HPV16 L1 Plant vaccines Tobacco Nicotiana tabacum 



This research was partially supported by grants from the Italian Ministry of Health F.S.N. 2003 and Italian Ministry of Research DD 1105/2002. PL was the recipient of a Ph.D. studentship of the University of Naples “Federico II”; part of the studentship was spent at Rutgers University. Anita Morgese and Alfonso Piccolo are gratefully acknowledged for technical help. We thank Dr. M. Müller (Deutsches Krebsforschungszentrum, Forschungsschwerpunkt Angewandte Tumorvirologie, 69120 Heidelberg, Germany) for providing anti-L1 monoclonal Mabs, rabbit anti-L1 polyclonal serum and baculovirus-derived VLPs. PL thanks in particular Dr. Z. Svab for stimulating discussions and guidance during his stay at Rutgers University.


  1. Azhakanandam K, Weissinger SM, Nicholson JS, Qu R, Weissinger AK (2007) Amplicon-plus targeting technology (APTT) for rapid production of a highly unstable vaccine protein in tobacco plants. Plant Mol Biol 63:393–404PubMedCrossRefGoogle Scholar
  2. Biemelt S, Sonnewald U, Galmbacher P, Willmitzer L, Müller M (2003) Production of human papillomavirus type 16 virus-like particles in transgenic plants. J Virol 77:9211–9220PubMedCrossRefGoogle Scholar
  3. Birch-Machin I, Newell CA, Hibberd JM, Gray JC (2004) Accumulation of rotavirus VP6 protein in chloroplasts of transplastomic tobacco is limited by protein stability. Plant Biotechnol J 2:261–270PubMedCrossRefGoogle Scholar
  4. Bock R (2007) Plastid biotechnology: prospects for herbicide and insect resistance, metabolic engineering and molecular farming. Curr Opin Biotechnol 18:100–106PubMedCrossRefGoogle Scholar
  5. Buonaguro FM, Tornesello ML, Salatiello I, Okong P, Buonaguro L, Beth-Giraldo E, Biryahwaho B, Sempala SD, Giraldo G (2000) The Uganda study on HPV variants and genital cancers. J Clin Virol 19:31–41PubMedCrossRefGoogle Scholar
  6. Carter JJ, Wipf GC, Benki SF, Christensen ND, Galloway DA (2003) Identification of a human papillomavirus type 16-specific epitope on the C-terminal arm of the major capsid protein L1. J Virol 77:11625–11632PubMedCrossRefGoogle Scholar
  7. Chen XS, Casini G, Harrison SC, Garcea RL (2001) Papillomavirus capsid protein expression in Escherichia coli: purification and assembly of HPV11 and HPV16 L1. J Mol Biol 307:173–182PubMedCrossRefGoogle Scholar
  8. Clifford GM, Smith JS, Plummer M, Munoz N, Franceschi S (2003) Human papillomavirus types in invasive cervical cancer worldwide: a meta-analysis. Br J Cancer 88:63–73PubMedCrossRefGoogle Scholar
  9. Daniell H (2006) Production of biopharmaceuticals and vaccines in plants via the chloroplast genome. Biotechnol J 1:1071–1079PubMedCrossRefGoogle Scholar
  10. Daniell H, Streatfield SJ, Wycoff K (2001) Medical molecular farming: production of antibodies, biopharmaceuticals and edible vaccines in plants. Trends Plant Sci 6:219–226PubMedCrossRefGoogle Scholar
  11. de Villiers EM, Fauquet C, Broker TR, Bernard HU, zur Hausen H (2004) Classification of papillomaviruses. Virology 324:17–27PubMedCrossRefGoogle Scholar
  12. Dell K, Koesters R, Linnebacher M, Klein C, Gissmann L (2006) Intranasal immunization with human papillomavirus type 16 capsomeres in the presence of non-toxic cholera toxin-based adjuvants elicits increased vaginal immunoglobulin levels. Vaccine 24:2238–2247PubMedCrossRefGoogle Scholar
  13. Fernández-San Millán A, Ortigosa SM, Hervás-Stubbs S, Corral-Martínez P, Seguí-Simarro JM, Gaétan J, Coursaget P, Veramendi J (2008) Human papillomavirus L1 protein expressed in tobacco chloroplasts self-assembles into virus-like particles that are highly immunogenic. Plant Biotechnol J (in press). doi: 10:1111/j.1467-652.2008.00338.x.
  14. Fischer R, Stoger E, Schillberg S, Christou P, Twyman RM (2004) Plant-based production of biopharmaceuticals. Curr Opin Plant Biol 7:152–158PubMedCrossRefGoogle Scholar
  15. Frazer IH (2006) HPV vaccines. Int J Gynaecol Obstet 94(Suppl 1):S81–S88CrossRefGoogle Scholar
  16. Hagensee ME, Yaegashi N, Galloway DA (1993) Self-assembly of human papillomavirus type 1 capsids by expression of the L1 protein alone or by coexpression of the L1 and L2 capsid proteins. J Virol 67:315–322PubMedGoogle Scholar
  17. Hayes CS, Bose B, Sauer RT (2002) Proline residues at the C terminus of nascent chains induce SsrA tagging during translation termination. J Biol Chem 277:33825–33832PubMedCrossRefGoogle Scholar
  18. Keiler KC, Waller PR, Sauer RT (1996) Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Science 271:990–993PubMedCrossRefGoogle Scholar
  19. Kim J, Klein PG, Mullet JE (1994) Synthesis and turnover of photosystem II reaction center protein D1. Ribosome pausing increases during chloroplast development. J Biol Chem 269:17918–17923PubMedGoogle Scholar
  20. Kohl T, Hitzeroth II, Stewart D, Varsani A, Govan VA, Christensen ND, Williamson AL, Rybicki EP (2006) Plant-produced cottontail rabbit papillomavirus L1 protein protects against tumor challenge: a proof-of-concept study. Clin Vaccine Immunol 13:845–853PubMedCrossRefGoogle Scholar
  21. Kohl TO, Hitzeroth II, Christensen ND, Rybicki EP (2007) Expression of HPV-11 L1 protein in transgenic Arabidopsis thaliana and Nicotiana tabacum. BMC Biotechnol 7:56PubMedCrossRefGoogle Scholar
  22. Kuroda H, Maliga P (2001a) Sequences downstream of the translation initiation codon are important determinants of translation efficiency in chloroplasts. Plant Physiol 125:430–436PubMedCrossRefGoogle Scholar
  23. Kuroda H, Maliga P (2001b) Complementarity of the 16S rRNA penultimate stem with sequences downstream of the AUG destabilizes the plastid mRNAs. Nucleic Acids Res 29:970–975PubMedCrossRefGoogle Scholar
  24. Leggatt GR, Frazer IH (2007) HPV vaccines: the beginning of the end for cervical cancer. Curr Opin Immunol 19:232–238PubMedCrossRefGoogle Scholar
  25. Li M, Beard P, Estes PA, Lyon MK, Garcea RL (1998) Intercapsomeric disulfide bonds in papillomavirus assembly and disassembly. J Virol 72:2160–2167PubMedGoogle Scholar
  26. Liu HL, Li WS, Lei T, Zheng J, Zhang Z, Yan XF, Wang ZZ, Wang YL, Si LS (2005) Expression of human papillomavirus type 16 L1 protein in transgenic tobacco plants. Acta Biochim Biophys Sin (Shanghai) 37:153–158CrossRefGoogle Scholar
  27. Lutz KA, Bosacchi MH, Maliga P (2006) Plastid marker-gene excision by transiently expressed CRE recombinase. Plant J 45:447–456PubMedCrossRefGoogle Scholar
  28. Ma JK, Drake PM, Christou P (2003) The production of recombinant pharmaceutical proteins in plants. Nat Rev Genet 4:794–805PubMedCrossRefGoogle Scholar
  29. Ma JK, Barros E, Bock R, Christou P, Dale PJ, Dix PJ, Fischer R, Irwin J, Mahoney R, Pezzotti M, Schillberg S, Sparrow P, Stoger E, Twyman RM (2005) Molecular farming for new drugs and vaccines. Current perspectives on the production of pharmaceuticals in transgenic plants. EMBO Rep 6:593–599PubMedCrossRefGoogle Scholar
  30. Maclean J, Koekemoer M, Olivier AJ, Stewart D, Hitzeroth II, Rademacher T, Fischer R, Williamson AL, Rybicki EP (2007) Optimization of human papillomavirus type 16 (HPV-16) L1 expression in plants: comparison of the suitability of different HPV-16 L1 gene variants and different cell-compartment localization. J Gen Virol 88:1460–1469PubMedCrossRefGoogle Scholar
  31. Magee A, Horvath E, Kavanagh TA (2004) Pre-screening plastid transgene expression in Escherichia coli may be unreliable as a predictor of expression levels in chloroplast-transformed plants. Plant Sci 166:1605–1611CrossRefGoogle Scholar
  32. Maliga P (2002) Engineering the plastid genome of higher plants. Curr Opin Plant Biol 5:164–172PubMedCrossRefGoogle Scholar
  33. Maliga P, Kuroda H, Corneille S, Lutz K, Svab Z (2001) Chloroplasts for the production of recombinant proteins. In: Proceedings of the 12th international congress on photosynthesis, Brisbane, Australia, August 18–23, 2001Google Scholar
  34. McLean CS, Churcher MJ, Meinke J, Smith GL, Higgins G, Stanley M, Minson AC (1990) Production and characterisation of a monoclonal antibody to human papillomavirus type 16 using recombinant vaccinia virus. J Clin Pathol 43:488–492PubMedCrossRefGoogle Scholar
  35. Milne RG, Luisoni E (1977) Rapid immune electron microscopy of virus preparations. Methods Virol 6:265–281Google Scholar
  36. Modis Y, Trus BL, Harrison SC (2002) Atomic model of the papillomavirus capsid. EMBO J 21:4754–4762PubMedCrossRefGoogle Scholar
  37. Molina A, Hervás-Stubbs S, Daniell H, Mingo-Castel AM, Veramendi J (2004) High-yield expression of a viral peptide animal vaccine in transgenic tobacco chloroplasts. Plant Biotechnol J 2:141–153PubMedCrossRefGoogle Scholar
  38. Munoz N, Bosch FX, de Sanjose S, Herrero R, Castellsague X, Shah KV, Snijders PJ, Meijer CJ (2003) Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med 348:518–527PubMedCrossRefGoogle Scholar
  39. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497CrossRefGoogle Scholar
  40. Murphy DJ (2007) Improving containment strategies in biopharming. Plant Biotechnol J 5:555–569PubMedCrossRefGoogle Scholar
  41. Müller M, Zhou J, Reed TD, Rittmuller C, Burger A, Gabelsberger J, Braspenning J, Gissmann L (1997) Chimeric papillomavirus-like particles. Virology 234:93–111PubMedCrossRefGoogle Scholar
  42. Nermut NV (1982) Advanced methods in electron microscopy of viruses. In: Howard CR (ed) New developments in practical virology. Alan Liss, New York, pp 1–58Google Scholar
  43. Pedrazzini E, Giovinazzo G, Bollini R, Ceriotti A, Vitale A (1994) Binding of BiP to an assembly-defective protein in plant cells. Plant J 5:103–110CrossRefGoogle Scholar
  44. Sasagawa T, Pushko P, Steers G, Gschmeissner SE, Hajibagheri MA, Finch J, Crawford L, Tommasino M (1995) Synthesis and assembly of virus-like particles of human papillomaviruses type 6 and type 16 in fission yeast Schizosaccharomyces pombe. Virology 206:126–135PubMedCrossRefGoogle Scholar
  45. Schiller JT, Lowy DR (2006) Prospects for cervical cancer prevention by human papillomavirus vaccination. Cancer Res 66:10229–10232PubMedCrossRefGoogle Scholar
  46. Simpson E (1981) Measurement of protein degradation in leaves of Zea mays using [3H] acetic anhydride and tritiated water. Plant Physiol 67:1214–1219PubMedCrossRefGoogle Scholar
  47. Stanley MA (2006) Human papillomavirus vaccines. Rev Med Virol 16:139–149PubMedCrossRefGoogle Scholar
  48. Stiekema WJ, Heidekamp F, Dirkse WG, van Beckum J, de Haan P, ten Bosh C, Louwerse JD (1988) Molecular cloning and analysis of four potato tuber mRNAs. Plant Mol Biol 11:255–269CrossRefGoogle Scholar
  49. Thönes N, Müller M (2007) Oral immunization with different assembly forms of the HPV 16 major capsid protein L1 induces neutralizing antibodies and cytotoxic T-lymphocytes. Virology 369:375–388PubMedCrossRefGoogle Scholar
  50. Touzé A, Mahe D, El Mehdaoui S, Dupuy C, Combita-Rojas AL, Bousarghin L, Pierre-Yves Sizaret PY, Coursaget P (2000) The nine C-terminal amino acids of the major capsid protein of the human papillomavirus type 16 are essential for DNA binding and gene transfer capacity. FEMS Microbiol Lett 189:121–127PubMedCrossRefGoogle Scholar
  51. Varsani A, Williamson AL, Rose RC, Jaffer M, Rybicki EP (2003) Expression of human papillomavirus type 16 major capsid protein in transgenic Nicotiana tabacum cv. Xanthi. Arch Virol 148:1771–1786PubMedCrossRefGoogle Scholar
  52. Varsani A, Williamson AL, Stewart D, Rybicki EP (2006) Transient expression of Human papillomavirus type 16 L1 protein in Nicotiana benthamiana using an infectious tobamovirus vector. Virus Res 120:91–96PubMedCrossRefGoogle Scholar
  53. Verma D, Daniell H (2007) Chloroplast vector systems for biotechnology applications. Plant Physiol 145:1129–1143PubMedCrossRefGoogle Scholar
  54. Whitney SM, Andrews TJ (2001) The gene for the ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco) small subunit relocated to the plastid genome of tobacco directs the synthesis of small subunits that assemble into Rubisco. Plant Cell 13:193–205PubMedCrossRefGoogle Scholar
  55. Wirth S, Segretin ME, Mentaberry A, Bravo-Almonacid F (2006) Accumulation of hEGF and hEGF-fusion proteins in chloroplast-transformed tobacco plants is higher in the dark than in the light. J Biotechnol 125:159–172PubMedCrossRefGoogle Scholar
  56. Zhang W, Carmichael J, Ferguson J, Inglis S, Ashrafian H, Stanley M (1998) Expression of human papillomavirus type 16 L1 protein in Escherichia coli: denaturation, renaturation, and self-assembly of virus-like particles in vitro. Virology 243:423–431PubMedCrossRefGoogle Scholar
  57. Zhou J, Doorbar J, Sun XY, Crawford LV, McLean CS, Frazer IH (1991) Identification of the nuclear localization signal of human papillomavirus type 16 L1 protein. Virology 185:625–632PubMedCrossRefGoogle Scholar
  58. Zoubenko OV, Allison LA, Svab Z, Maliga P (1994) Efficient targeting of foreign genes into the tobacco plastid genome. Nucleic Acids Res 22:3819–3824PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Paolo Lenzi
    • 1
    • 2
  • Nunzia Scotti
    • 1
  • Fiammetta Alagna
    • 1
  • Maria L. Tornesello
    • 3
  • Andrea Pompa
    • 4
  • Alessandro Vitale
    • 4
  • Angelo De Stradis
    • 5
  • Luigi Monti
    • 1
  • Stefania Grillo
    • 1
  • Franco M. Buonaguro
    • 3
  • Pal Maliga
    • 2
  • Teodoro Cardi
    • 1
    Email author
  1. 1.CNR-IGV, Institute of Plant Genetics-Research Division PorticiPorticiItaly
  2. 2.Waksman Institute of MicrobiologyRutgers, The State University of New JerseyPiscatawayUSA
  3. 3.Viral Oncogenesis and Immunotherapy, Department of Experimental OncologyIstituto Nazionale Tumori “Fondazione Senatore G. Pascale”NapoliItaly
  4. 4.CNR-IBBA, Istituto di Biologia e Biotecnologia AgrariaMilanoItaly
  5. 5.CNR-IVV, Institute of Plant VirologyBariItaly

Personalised recommendations