Transgenic Research

, Volume 17, Issue 4, pp 587–597 | Cite as

Development of an in planta method for transformation of alfalfa (Medicago sativa)

Original Paper

Abstract

Conventional methods in transforming alfalfa (Medicago sativa) require multiple tissue culture manipulations that are time-consuming and expensive, while applicable only to a few highly regenerable genotypes. Here, we describe a simple in planta method that makes it possible to transform a commercial variety without employing selectable marker genes. Basically, young seedlings are cut at the apical node, cold-treated, and vigorously vortexed in an Agrobacterium suspension also containing sand. About 7% of treated seedlings produced progenies segregating for the T-DNA. The vortex-mediated seedling transformation method was applied to transform alfalfa with an all-native transfer DNA comprising a silencing construct for the caffeic acid o-methyltransferase (Comt) gene. Resulting intragenic plants accumulated reduced levels of the indigestible fiber component lignin that lowers forage quality. The absence of both selectable marker genes and other foreign genetic elements may expedite the governmental approval process for quality-enhanced alfalfa.

Keywords

Marker-free transformation in planta transformation Intragenic alfalfa Biotechnology 

Notes

Acknowledgements

The authors are grateful to Scott Simplot, Bill Whitacre, and Dr. Kathy Swords for fruitful discussion and support. Serena McCoy, Jeff Hein, and Michele Krucker are acknowledged for excellent technical assistance.

References

  1. Atlung T, Christensen BB, Hansen FG (1999) Role of the rom protein in copy number control of plasmid pBR322 at different growth rates in Escherichia coli K-12. Plasmid 41:110–119PubMedCrossRefGoogle Scholar
  2. Barton KA, Binns AN, Chilton MM, Matzke AJM (2000) Regeneration of plants containing genetically engineered T-DNA. United States patent 6051757Google Scholar
  3. Bent AF (2006) Arabidopsis thaliana Floral dip transformation method. In: Wang K (eds) Methods mol biol. Agrobacterium protocols, vol 343, 2nd edn. Humana Press, Totowa, NJ 87–103Google Scholar
  4. Cheng XY, Gao MW, Liang ZQ, Liu GZ, Hu TC (1992) Somaclonal variation in winter wheat: frequency, occurrence and inheritance. Euphytica 64:1–10Google Scholar
  5. Christou P, Swain WF, Yang NS, McCabe DE (1989) Inheritance and expression of foreign genes in transgenic soybean plants. Proc Natl Acad Sci USA 86:7500–7504PubMedCrossRefGoogle Scholar
  6. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743PubMedCrossRefGoogle Scholar
  7. Curtis IS, Nam HG (2001) Transgenic radish (Raphanus sativus L. longipinnatus Bailey) by floral-dip method–plant development and surfactant are important in optimizing transformation efficiency. Transgenic Res 10:363–371PubMedCrossRefGoogle Scholar
  8. de Vetten N, Wolters AM, Raemakers K, van der Meer I, ter Stege R, Heeres E, Heeres P, Visser R (2003) A transformation method for obtaining marker-free plants of a cross-pollinating and vegetatively propagated crop. Nat Biotechnol 21:439–442PubMedCrossRefGoogle Scholar
  9. Desfeux C, Clough SJ, Bent AF (2000) Female reproductive tissues are the primary target of Agrobacterium-mediated transformation by the Arabidopsis floral-dip method. Plant Physiol 123:895–904PubMedCrossRefGoogle Scholar
  10. Edwards GA (1998) Genetic modification of plant material. World Patent application 9856932A1Google Scholar
  11. Fox JL (2007) US courts thwart GM alfalfa and turf grass. Nat Biotechnol 25:367–368PubMedCrossRefGoogle Scholar
  12. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158PubMedCrossRefGoogle Scholar
  13. Guo D, Chen F, Wheeler J, Winder J, Selman S, Peterson M, Dixon RA (2001) Improvement of in-rumen digestibility of alfalfa forage by genetic manipulation of lignin O-methyltransferases. Transgenic Res 10:457–464PubMedCrossRefGoogle Scholar
  14. Harrison MJ, Trieu AT (2000) Plant transformation process. World Patent application 0037663A2Google Scholar
  15. Inan G, Zhang Q, Li P, Wang Z, Cao Z, Zhang H, Zhang C, Quist TM, Goodwin SM, Zhu J, Shi H, Damsz B, Charbaji T, Gong Q, Ma S, Fredricksen M, Galbraith DW, Jenks MA, Rhodes D, Hasegawa PM, Bohnert HJ, Joly RJ, Bressan RA, Zhu JK (2004) Salt cress. A halophyte and cryophyte Arabidopsis relative model system and its applicability to molecular genetic analyses of growth and development of extremophiles. Plant Physiol 135:1718–1737PubMedCrossRefGoogle Scholar
  16. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907PubMedGoogle Scholar
  17. Khoudi H, Vezina LP, Mercier J, Castonguay Y, Allard G, Laberge S (1997) An alfalfa rubisco small subunit homologue shares cis-acting elements with the regulatory sequences of the RbcS-3A gene from pea. Gene 197:343–351PubMedCrossRefGoogle Scholar
  18. Koncz K, Schell J (1986) The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204(3):383–396CrossRefGoogle Scholar
  19. Konig A (2003) A framework for designing transgenic crops––science, safety and citizen’s concerns. Nat Biotechnol 21:1274–1279PubMedCrossRefGoogle Scholar
  20. Lin J-J, Assad-Garcia N, Kuo J (1994) Effects of Agrobacterium cell concentration on the transformation efficiency of tobacco and Arabidopsis thaliana. Focus 16(3):72–77Google Scholar
  21. Liu F, Cao MQ, Li Y, Robaglia C, Tourneur C (1998) In planta transformation of pakchoi (Brassica campestris L ssp Chinensis) by infiltration of adult plants with Agrobacterium. Acta Hort 467:187–192Google Scholar
  22. Liu YG, Whittier RF (1995) Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 25:674–681PubMedCrossRefGoogle Scholar
  23. Miller M, Tagliani L, Wang N, Berka B, Bidney D, Zhao ZY (2002) High efficiency transgene segregation in co-transformed maize plants using an Agrobacterium tumefaciens 2 T-DNA binary system. Transgenic Res 11:381–396PubMedCrossRefGoogle Scholar
  24. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  25. Opabode JT (2006) Agrobacterium-mediated transformation of plants: emerging factors that influence efficiency. Biotechn Mol Biol Rev 1:12–20Google Scholar
  26. Pederson JF, Vogel KP, Funnell DL (2005) Impact of reduced lignin of fitness. Crop Sci 45:812–819CrossRefGoogle Scholar
  27. Rogers SG, Fraley RT (2001) Chimeric genes suitable for expression in plant cells. United States patent 6174724Google Scholar
  28. Rommens CM, Bougri O, Yan H, Humara JM, Owen J, Swords K, Ye J (2005) Plant-derived transfer DNAs. Plant Physiol 139:1338–1349PubMedCrossRefGoogle Scholar
  29. Rommens CM, Humara JM, Ye J, Yan H, Richael C, Zhang L, Perry R, Swords K (2004) Crop improvement through modification of the plant’s own genome. Plant Physiol 135:421–431PubMedCrossRefGoogle Scholar
  30. Rommens CM, van Haaren MJ, Buchel AS, Mol JN, van Tunen AJ, Nijkamp HJ, Hille J (1992) Transactivation of Ds by Ac-transposase gene fusions in tobacco. Mol Gen Genet 231:433–441PubMedCrossRefGoogle Scholar
  31. Samac DA, Austin-Phillips S (2006) Alfalfa (Medicago sativa L.). In: Wang K (eds) Methods mol biol. Agrobacterium protocols, vol 343, 2nd edn. Humana Press, Totowa, NJ pp 301–311Google Scholar
  32. Somers DA, Samac DA, Olhoft PM (2003) Recent advances in legume transformation. Plant Physiol 131:892–899PubMedCrossRefGoogle Scholar
  33. Strauss SH (2003) Genetic technologies. Genomics, genetic engineering, and domestication of crops. Science 300:61–62PubMedCrossRefGoogle Scholar
  34. Tague BW (2001) Germ-line transformation of Arabidopsis lasiocarpa. Transgenic Res 10:259–267PubMedCrossRefGoogle Scholar
  35. Trick HN, Finer JJ(1997) SAAT: Sonication Assisted Agrobacterium-mediated Transformation. Transgenic Res 6:329–336CrossRefGoogle Scholar
  36. Trieu AT, Burleigh SH, Kardailsky IV, Maldonado-Mendoza IE, Versaw WK, Blaylock LA, Shin H, Chiou TJ, Katagi H, Dewbre GR, Weigel D, Harrison MJ (2000) Transformation of Medicago truncatula via infiltration of seedlings or flowering plants with Agrobacterium. Plant J 22:531–541PubMedCrossRefGoogle Scholar
  37. Yan H, Chretien R, Ye J, Rommens CM (2006) New construct approaches for efficient gene silencing in plants. Plant Physiol 141:1508–1518PubMedCrossRefGoogle Scholar
  38. Zuo JR, Niu QW, Moller SG, Chua NH (2001) Chemical-regulated, site-specific DNA excision in transgenic plants. Nat Biotechnol 19:157–161PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.J. R. Simplot Company, Simplot Plant SciencesBoiseUSA

Personalised recommendations