Transgenic Research

, Volume 16, Issue 4, pp 437–448 | Cite as

A leaf-based regeneration and transformation system for maize (Zea mays L.)

Original Paper

Abstract

Efficient methods for in vitro propagation, regeneration, and transformation of plants are of pivotal importance to both basic and applied research. While being the world’s major food crops, cereals are among the most difficult-to-handle plants in tissue culture which severely limits genetic engineering approaches. In maize, immature zygotic embryos provide the predominantly used material for establishing regeneration-competent cell or callus cultures for genetic transformation experiments. The procedures involved are demanding, laborious and time consuming and depend on greenhouse facilities. We have developed a novel tissue culture and plant regeneration system that uses maize leaf tissue and thus is independent of zygotic embryos and greenhouse facilities. We report here: (i) a protocol for the efficient induction of regeneration-competent callus from maize leaves in the dark, (ii) a protocol for inducing highly regenerable callus in the light, and (iii) the use of leaf-derived callus for the generation of stably transformed maize plants.

Keywords

Zea mays Plant transformation Tissue culture In vitro culture ManA 

References

  1. Agrawal PK, Kohli A, Twyman RM, Christou P (2005) Transformation of plants with multiple cassettes generates simple transgene integration patterns and high expression levels. Mol Breed 16:247–260CrossRefGoogle Scholar
  2. Ahlert D, Ruf S, Bock R (2003) Plastid protein synthesis is required for plant development in tobacco. Proc Natl Acad Sci USA 100:15730–15735PubMedCrossRefGoogle Scholar
  3. Altpeter F, Baisakh N, Beachy R, Bock R, Capell T, Christou P, Daniell H, Datta K, Datta S, Dix PJ, Fauquet C, Huang N, Kohli A, Mooibroek H, Nicholson L, Nguyen TT, Nugent G, Raemakers K, Romano A, Somers DA, Stoger E, Taylor N, Visser R (2005) Particle bombardment and the genetic enhancement of crops: myths and realities. Mol Breed 15:305–327CrossRefGoogle Scholar
  4. Armstrong CL (1999) The first decade of maize transformation: a review and future perspectives. Maydica 44:101–109Google Scholar
  5. Bilang R, Fütterer J, Sautter C (1999) Transformation of cereals. Genet Eng 21:113–157Google Scholar
  6. Bock R (2001) Transgenic chloroplasts in basic research and plant biotechnology. J Mol Biol 312:425–438PubMedCrossRefGoogle Scholar
  7. Bock R, Khan MS (2004) Taming plastids for a green future. Trends Biotechnol 22:311–318PubMedCrossRefGoogle Scholar
  8. Breitler JC, Labeyrie A, Meynard D, Legavre T, Guiderdoni E (2002) Efficient microprojectile bombardment-mediated transformation of rice using gene cassettes. Theor Appl Genet 104:709–719PubMedCrossRefGoogle Scholar
  9. Chu C-C, Wang C-C, Sun C-S, Hsu C, Yin K-C, Chu C-Y, Bi FY (1975) Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources. Sci Sin 18:659–668Google Scholar
  10. Conger BV, Novak FJ, Afza R, Erdelsky K (1987) Somatic embryogenesis from cultured leaf segments of Zea mays. Plant Cell Rep 6:345–347CrossRefGoogle Scholar
  11. Daniell H, Kumar S, Dufourmantel N (2005) Breakthrough in chloroplast genetic engineering of agronomically important crops. Trends Biotechnol 23:239–245CrossRefGoogle Scholar
  12. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15Google Scholar
  13. Fromm H, Edelman M, Aviv D, Galun E (1987) The molecular basis for rRNA-dependent spectinomycin resistance in Nicotiana chloroplasts. EMBO J 6:3233–3237PubMedGoogle Scholar
  14. Fu XD, Duc LT, Fontana S, Bong BB, Tinjuangjun P, Sudhakar D, Twyman RM, Christou P, Kohli A (2000) Linear transgene constructs lacking vector backbone sequences generate low-copy-number transgenic plants with simple integration patterns. Transgenic Res 9:11–19PubMedCrossRefGoogle Scholar
  15. Gless C, Lörz H, Jähne-Gärtner A (1998a) Establishment of a highly efficient regeneration system from leaf base segments of oat (Avena sativa L.). Plant Cell Rep 17:441–445CrossRefGoogle Scholar
  16. Gless C, Lörz H, Jähne-Gärtner A (1998b) Transgenic oat plants obtained at high efficiency by microprojectile bombardment of leaf base segments. J Plant Physiol 152:151–157Google Scholar
  17. Gordon-Kamm W, Dilkes BP, Lowe K, Hoerster G, Sun X, Ross M, Church L, Bunde C, Farrell J, Hill P, Maddock S, Snyder J, Sykes L, Li Z, Woo Y-M, Bidney D, Larkins BA (2002) Stimulation of the cell cycle and maize transformation by disruption of the plant retinoblastoma pathway. Proc Natl Acad Sci 99:11975–11980PubMedCrossRefGoogle Scholar
  18. Han C-d, Coe Jr. EH, Martienssen RA (1992) Molecular cloning and characterization of iojap (ij), a pattern striping gene of maize. EMBO J 11:4037–4046PubMedGoogle Scholar
  19. Hansen G, Wright MS (1999) Recent advances in the transformation of plants. Trends Plant Sci 4:226–231PubMedCrossRefGoogle Scholar
  20. Hess WR, Hoch B, Zeltz P, Hübschmann T, Kössel H, Börner T (1994) Inefficient rpl2 splicing in barley mutants with ribosome-deficient plastids. Plant Cell 6:1455–1465PubMedCrossRefGoogle Scholar
  21. Horn ME, Sherrad JH, Widholm JM (1983) Photoautotrophic growth of soybean cells in suspension culture. Plant Physiol 72:426–429PubMedGoogle Scholar
  22. Huang F-C, Klaus SMJ, Herz S, Zou Z, Koop H-U, Golds TJ (2002) Efficient plastid transformation in tobacco using the aphA-6 gene and kanamycin selection. Mol Genet Genomics 268:19–27PubMedCrossRefGoogle Scholar
  23. Igasaki T, Akashi N, Ujino-Ihara T, Matsubayashi Y, Sakagami Y, Shinohara K (2003) Phytosulfokine stimulates somatic embryogenesis in Cryptomeria japonica. Plant Cell Physiol 44:1412–1416PubMedCrossRefGoogle Scholar
  24. Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405Google Scholar
  25. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: ß-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907PubMedGoogle Scholar
  26. Kemper EL, da Silva MJ, Arruda P (1996) Effect of microprojectile bombardment parameters and osmotic treatment on particle penetration and tissue damage in transiently transformed cultured immature maize (Zea mays L.) embryos. Plant Sci 121:85–93CrossRefGoogle Scholar
  27. Khan MS, Maliga P (1999) Fluorescent antibiotic resistance marker for tracking plastid transformation in higher plants. Nat Biotechnol 17:910–915PubMedCrossRefGoogle Scholar
  28. Kohli A, Leech M, Vain P, Laurie DA, Christou P (1998) Transgene organization in rice engineered through direct DNA transfer supports a two-phase integration mechanism mediated by the establishment of integration hot spots. Proc Natl Acad Sci USA 95:7203–7208PubMedCrossRefGoogle Scholar
  29. Kramer C, DiMaio J, Carswell GK, Shillito RD (1993) Selection of transformed protoplast-derived Zea mays colonies with phosphinothricin and a novel assay using the pH indicator chlorophenol red. Planta 190:454–458CrossRefGoogle Scholar
  30. Lorbiecke R, Steffens M, Tomm JM, Scholten S, von Wiegen P, Kranz E, Wienand U, Sauter M (2005) Phytosulphokine gene regulation during maize (Zea mays L.) reproduction. J Exp Bot 56:1805–1819PubMedCrossRefGoogle Scholar
  31. Maliga P (2004) Plastid transformation in higher plants. Annu Rev Plant Biol 55:289–313PubMedCrossRefGoogle Scholar
  32. Matsubayashi Y, Takagi L, Sakagami Y (1997) Phytosulfokine-a, a sulfated pentapeptide stimulates the proliferation of rice cells by means of specific high- and low-affinity binding sites. Proc Natl Acad Sci USA 94:13357–13362PubMedCrossRefGoogle Scholar
  33. Matsubayashi Y, Ogawa M, Morita A, Sakagami Y (2002) An LRR receptor kinase involved in perception of a peptide plant hormone, phytosulfokine. Science 296:1470–1472PubMedCrossRefGoogle Scholar
  34. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue culture. Physiol Plant 15:473–497CrossRefGoogle Scholar
  35. Nishimura A, Ashikari M, Lin S, Takashi T, Angeles ER, Yamamoto T, Matsuoka M (2005) Isolation of a rice regeneration quantitative trait loci gene and its application to transformation systems. Proc Natl Acad Sci USA 102:11940–11944PubMedCrossRefGoogle Scholar
  36. Pasternak TP, Rudas VA, Lörz H, Kumlehn J (1999) Embryogenic callus formation and plant regeneration from leaf base segments of barley (Hordeum vulgare L.). J Plant Physiol 155:371–375Google Scholar
  37. Ray SD, Ghosh PD (1990) Somatic embryogenesis and plant regeneration from cultured leaf explants of Zea mays. Ann Bot 66:497–500Google Scholar
  38. Ruf S, Hermann M, Berger IJ, Carrer H, Bock R (2001) Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nat Biotechnol 19:870–875PubMedCrossRefGoogle Scholar
  39. Svab Z, Maliga P (1993) High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc Natl Acad Sci USA 90:913–917PubMedCrossRefGoogle Scholar
  40. Timmermans MCP, Maliga P, Vieira J, Messing J (1990) The pFF plasmids: cassettes utilising CaMV sequences for expression of foreign genes in plants. J Biotechnol 14:333–344PubMedCrossRefGoogle Scholar
  41. Weisser P, Krämer R, Sprenger GA (1996) Expression of the Escherichia coli pmi gene, encoding phosphomannose-isomerase in Zymomonas mobilis, leads to utilization of mannose as novel growth substrate, which can be used as a selective marker. Appl Environ Microbiol 62:4155–4161PubMedGoogle Scholar
  42. Wright M, Dawson J, Dunder E, Suttie J, Reed J, Kramer C, Chang Y, Novitzky R, Wang H, Artim-Moore L (2001) Efficient biolistic transformation of maize (Zea mays L.) and wheat (Triticum aestivum L.) using the phosphomannose isomerase gene, pmi, as the selectable marker. Plant Cell Rep 20:429–436CrossRefGoogle Scholar
  43. Zhang S, Lemaux PG (2004) Molecular analysis of in vitro shoot organogenesis. Crit Rev Plant Sci 23:325–335CrossRefGoogle Scholar
  44. Zhang S, Williams-Carrier R, Lemaux PG (2002) Transformation of recalcitrant maize elite inbreds using in vitro shoot meristematic cultures induced from germinated seedlings. Plant Cell Rep 21:263–270CrossRefGoogle Scholar
  45. Zhong H, Srinivasan C, Sticklen MB (1992a) In-vitro morphogenesis of corn (Zea mays L.). I. Differentiation of multiple shoot clumps and somatic embryos from shoot tips. Planta 187:483–489CrossRefGoogle Scholar
  46. Zhong H, Srinivasan C, Sticklen MB (1992b) In-vitro morphogenesis of corn (Zea mays L.). II. Differentiation of ear and tassel clusters from cultured shoot apices and immature inflorescences. Planta 187:490–497Google Scholar
  47. Zhong H, Sun B, Warkentin D, Zhang S, Wu R, Wu T, Sticklen MB (1996) The competence of maize shoot meristems for integrative transformation and inherited expression of transgenes. Plant Physiol 110:1097–1107PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Mohammad Ahmadabadi
    • 1
  • Stephanie Ruf
    • 1
  • Ralph Bock
    • 1
  1. 1.Max-Planck-Institut für Molekulare PflanzenphysiologiePotsdam-GolmGermany

Personalised recommendations