Transgenic Research

, Volume 16, Issue 1, pp 41–49 | Cite as

Simple and efficient plastid transformation system for the liverwort Marchantia polymorpha L. suspension-culture cells

  • Shota Chiyoda
  • Philip J. Linley
  • Katsuyuki T. Yamato
  • Hideya Fukuzawa
  • Akiho Yokota
  • Takayuki KohchiEmail author
Original Paper


We have established a simple and efficient plastid transformation system for liverwort, Marchantia polymorpha L., suspension-culture cells, which are homogenous, chloroplast-rich and␣rapidly growing. Plasmid pCS31 was constructed to integrate an aadA expression cassette for spectinomycin-resistance into the trnI–trnA intergenic region of the liverwort plastid DNA by homologous recombination. Liverwort suspension-culture cells were bombarded with pCS31-coated gold projectiles and selected on a medium containing spectinomycin. Plastid transformants were reproducibly isolated from the obtained spectinomycin-resistant calli. Selection on a sucrose-free medium greatly improved the efficiency of selection of plastid transformants. Homoplasmic plastid transformant lines were established by␣successive subculturing for 14 weeks or longer on the spectinomycin-containing medium. The plastid transformation system of liverwort suspension-culture cells should facilitate the investigation of the fundamental genetic systems of plastid DNA, such as replication.


Plastid transformation Marchantia polymorpha Homoplasmy Bryophyte Suspension-culture 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Plasmid pCT08 was kindly provided by Dr. T. Shikanai. We thank Dr. F. Sato for the use of a biolistic delivery system. S.C. was supported by the 21st Century COE Program of the Ministry of Education, Culture, Sports, Science and Technology (MEXT) to Kyoto University. This work was supported in part by the grant “Knowledge Cluster Initiative” from MEXT.


  1. Bock R (2001) Transgenic plastids in basic research and plant biotechnology. J Mol Biol 312:425–438PubMedCrossRefGoogle Scholar
  2. Boynton JE, Gillham NW, Harris EH, Hosler JP, Johnson AM, Jones AR, Randolph-Anderson BL, Robertson D, Klein TM, Shark KB, Sanford JC (1988) Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240:1534–1538PubMedCrossRefGoogle Scholar
  3. Corneille S, Lutz K, Svab Z, Maliga P (2001) Efficient elimination of selectable marker genes from the plastid genome by the CRE-lox site-specific recombination system. Plant J 27:171–178PubMedCrossRefGoogle Scholar
  4. Daniell H, Kumar S, Dufourmantel N (2005) Breakthrough in chloroplast genetic engineering of agronomically important crops. Trends Biotechnol 23:238–245PubMedCrossRefGoogle Scholar
  5. Dufourmantel N, Pelissier B, Garcon F, Peltier G, Ferullo JM, Tissot G (2004) Generation of fertile transplastomic soybean. Plant Mol Biol 55:479–489PubMedCrossRefGoogle Scholar
  6. Fujie M, Kuroiwa H, Kawano S, Mutoh S, Kuroiwa T (1994) Behavior of organelles and their nucleoids in the shoot apical meristem during leaf development in Arabidopsis thaliana L. Planta 194:395–405CrossRefGoogle Scholar
  7. Golds T, Maliga P, Koop HU (1993) Stable plastid transformation in PEG-treated protoplasts of Nicotiana tabacum. Bio-Technology 11:95–97Google Scholar
  8. Heifetz PB (2000) Genetic engineering of the chloroplast. Biochimie 82:655–666PubMedCrossRefGoogle Scholar
  9. Huang FC, Klaus SM, Herz S, Zou Z, Koop HU, Golds TJ (2002) Efficient plastid transformation in tobacco using the aphA-6 gene and kanamycin selection. Mol Gen Genet 268:19–27Google Scholar
  10. Iamtham S, Day A (2000) Removal of antibiotic resistance genes from transgenic tobacco plastids. Nat Biotechnol 18:1172–1176PubMedCrossRefGoogle Scholar
  11. Kanamoto H, Yamashita A, Asao H, Okumura S, Takase H, Hattori M, Yokota A, Tomizawa K (2006) Efficient and stable transformation of Lactuca sativa L. cv. Cisco (lettuce) plastids. Transgenic Res 15:205–217PubMedCrossRefGoogle Scholar
  12. Khan MS, Maliga P (1999) Fluorescent antibiotic resistance marker for tracking plastid transformation in higher plants. Nat Biotechnol 17:910–915PubMedCrossRefGoogle Scholar
  13. Klein TM, Wolf ED, Wu R, Sanford JC (1987) High-velocity microprojectiles for delivering nucleic acid into living cells. Nature 327:70–73CrossRefGoogle Scholar
  14. Kohchi T, Shirai H, Fukuzawa H, Sano T, Komano T, Umesono K, Inokuchi H, Ozeki H, Ohyama K (1988) Structure and organization of Marchantia polymorpha chloroplast genome IV inverted repeat and small single copy regions. J Mol Biol 203:353–372PubMedCrossRefGoogle Scholar
  15. Koop HU, Steinmuller K, Wagner H, Rossler C, Eibl C, Sacher L (1996) Integration of foreign sequences into␣the tobacco plastome via polyethylene glycol-mediated protoplast transformation. Planta 199:193–201PubMedCrossRefGoogle Scholar
  16. Kumar S, Dhingra A, Daniell H (2004a) Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots, and leaves confers enhanced salt tolerance. Plant Physiol 136:2843–2854CrossRefGoogle Scholar
  17. Kumar S, Dhingra A, Daniell H (2004b) Stable transformation of the cotton plastid genome and maternal inheritance of transgenes. Plant Mol Biol 56:203–216CrossRefGoogle Scholar
  18. Kuroiwa T (1991) The replication, differentiation, and inheritance of plastids with emphasis on the concept of organelle nuclei. Int Rev Cytol 128:1–62CrossRefGoogle Scholar
  19. Langbecker CL, Ye GN, Broyles DL, Duggan LL, Xu CW, Hajdukiewicz PT, Armstrong CL, Staub JM (2004) High-frequency transformation of undeveloped plastids in tobacco suspension cells. Plant Physiol 135:39–46PubMedCrossRefGoogle Scholar
  20. Lapidot M, Raveh D, Sivan A, Arad SM, Shapira M (2002) Stable chloroplast transformation of the unicellular red alga Porphyridium species. Plant Physiol 129:7–12PubMedCrossRefGoogle Scholar
  21. Lelivelt CLC, McCabe MS, Newell CA, deSnoo CB, van Dun KMP, Birch-Machin I, Gray JC, Mills KHG, Nugent JM (2005) Stable plastid transformation in lettuce (Lactuca sativa L.). Plant Mol Biol 58:763–774PubMedCrossRefGoogle Scholar
  22. Lutz KA, Corneille S, Azhagiri AK, Svab Z, Maliga P (2004) A novel approach to plastid transformation utilizes the phiC31 phage integrase. Plant J 37:906–913PubMedCrossRefGoogle Scholar
  23. Maliga P (2004) Plastid transformation in higher plants. Annu Rev Plant Biol 55:289–313PubMedCrossRefGoogle Scholar
  24. Murray MG, Thompson WF (1980) Rapid isolation of high weight plant DNA. Nucleic Acids Res 8:4321–4325PubMedCrossRefGoogle Scholar
  25. O’Neill C, Horvath GV, Horvath E, Dix PJ, Medgyesy P (1993) Chloroplast transformation in plants: polyethylene glycol (PEG) treatment of protoplasts is an alternative to biolistic delivery systems. Plant J 3:729–738PubMedCrossRefGoogle Scholar
  26. Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota S, Inokuchi H, Ozeki H (1986) Chloroplast gene organization deduced from complete sequence of Liverwort Marchantia polymorpha chloroplast DNA. Nature 322:572–574CrossRefGoogle Scholar
  27. Oldenburg DJ, Bendich AJ (2004) Most chloroplast DNA of maize seedlings in linear molecules with defined ends and branched forms. J Mol Biol 335:953–970PubMedCrossRefGoogle Scholar
  28. Ono K, Ohyama K, Gamborg AD (1979) Regeneration of the liverwort Marchantia Polymorpha L. from protoplasts isolated from cell suspension culture. Plant Sci Lett 14:225–229CrossRefGoogle Scholar
  29. Ruf S, Hermann M, Berger IJ, Carrer H, Bock R (2001) Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nat Biotechnol 19:870–875PubMedCrossRefGoogle Scholar
  30. Shikanai T, Endo T, Hashimoto T, Yamada Y, Asada K, Yokota A (1998) Directed disruption of the tobacco ndhB gene impairs cyclic electron flow around photosystem I. Proc Natl Acad Sci USA 95:9705–9709PubMedCrossRefGoogle Scholar
  31. Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5:2043–2049PubMedGoogle Scholar
  32. Sidorov VA, Kasten D, Pang SZ, Hajdukiewicz PT, Staub JM, Nehra NS (1999) Stable chloroplast transformation in potato: use of green fluorescent protein as a plastid marker. Plant J 19:209–216PubMedCrossRefGoogle Scholar
  33. Skarjinskaia M, Svab Z, Maliga P (2003) Plastid transformation in Lesquerella fendleri, an oilseed Brassicacea. Transgenic Res 12:115–122PubMedCrossRefGoogle Scholar
  34. Sugiura C, Sugita M (2004) Plastid transformation reveals that moss tRNAArg-CCG is not essential for plastid function. Plant J 40:314–321PubMedCrossRefGoogle Scholar
  35. Svab Z, Maliga P (1993) High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc Natl Acad Sci USA 90:913–917PubMedCrossRefGoogle Scholar
  36. Svab Z, Hajdukiewicz P, Maliga P (1990) Stable transformation of plastids in higher plants. Proc Natl Acad Sci USA 87: 8526–8530PubMedCrossRefGoogle Scholar
  37. Takenaka M, Yamaoka S, Hanajiri T, Shimizu-Ueda Y, Yamato KT, Fukuzawa H, Ohyama K (2000) Direct transformation and plant regeneration of the haploid liverwort Marchantia polymorpha L. Transgenic Res 9:179–185PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Shota Chiyoda
    • 1
  • Philip J. Linley
    • 1
  • Katsuyuki T. Yamato
    • 1
  • Hideya Fukuzawa
    • 1
  • Akiho Yokota
    • 2
  • Takayuki Kohchi
    • 1
    Email author
  1. 1.Division of Integrated Life Science, Graduate School of BiostudiesKyoto UniversityKyotoJapan
  2. 2.Graduate School of Biological SciencesNara Institute of Science and TechnologyIkoma, NaraJapan

Personalised recommendations