Transgenic Research

, Volume 15, Issue 6, pp 751–760 | Cite as

Generation of trangenic Xenopus laevis using the Sleeping Beauty transposon system

  • L. Sinzelle
  • J. Vallin
  • L. Coen
  • A. Chesneau
  • D. Du Pasquier
  • N. Pollet
  • B. Demeneix
  • A. Mazabraud
Short Communication

Abstract

Using the Sleeping Beauty (SB) transposon system, we have developed a simple method for the generation of Xenopus laevis transgenic lines. The transgenesis protocol is based on the co-injection of the SB transposase mRNA and a GFP-reporter transposon into one-cell stage embryos. Transposase-dependent reporter gene expression was observed in cell clones and in hemi-transgenic animals. We determined an optimal ratio of transposase mRNA versus transposon-carrying plasmid DNA that enhanced the proportion of hemi-transgenic tadpoles. The transgene is integrated into the genome and may be transmitted to the F1 offspring depending on the germline mosaicism. Although the transposase is necessary for efficient generation of transgenic Xenopus, the integration of the transgene occurred by an non-canonical transposition process. This was observed for two transgenic lines analysed. The transposon-based technique leads to a high transgenesis rate and is simple to handle. For these reasons, it could present an attractive alternative to the classical Restriction Enzyme Mediated Integration (REMI) procedure.

Keywords

Xenopus laevis Transgenesis Transposon Sleeping Beauty 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

References

  1. Allen BG, Weeks DL (2005) Transgenic Xenopus laevis embryos can be generated using phiC31 integrase. Nat Method 2:975–979CrossRefGoogle Scholar
  2. Collier LS, Carlson CM, Ravimohan S, Dupuy AJ, Largaespada DA (2005) Cancer gene discovery in solid tumours using transposon-based somatic mutagenesis in the mouse. Nature 436:272–276PubMedCrossRefGoogle Scholar
  3. Davidson AE, Balciunas D, Mohn D, Shaffer J, Hermanson S, Sivasubbu S, Cliff MP, Hackett PB, Ekker SC (2003) Efficient gene delivery and gene expression in zebrafish using the Sleeping Beauty transposon. Dev Biol 263:191–202PubMedCrossRefGoogle Scholar
  4. de Luze A, Sachs L, Demeneix B (1993) Thyroid hormone-dependent transcriptional regulation of exogenous genes transferred into Xenopus tadpole muscle in vivo. Proc Natl Acad Sci USA 90:7322–7326PubMedCrossRefGoogle Scholar
  5. Dupuy AJ, Clark K, Carlson CM, Fritz S, Davidson AE, Markley KM, Finley K, Fletcher CF, Ekker SC, Hackett PB, Horn S, Largaespada DA (2002) Mammalian germ-line transgenesis by transposition. Proc Natl Acad Sci USA 99:4495–4499PubMedCrossRefGoogle Scholar
  6. Dupuy AJ, Akagi K, Largaespada DA, Copeland NG, Jenkins NA (2005) Mammalian mutagenesis using a highly mobile somatic Sleeping Beauty transposon system. Nature 436:221–226PubMedCrossRefGoogle Scholar
  7. Etkin LD, Pearman B (1987) Distribution, expression and germ line transmission of exogenous DNA injected into fertilized eggs of Xenopus laevis. Development 99:15–23PubMedGoogle Scholar
  8. Geurts AM, Yang Y, Clark KJ, Liu G, Cui Z, Dupuy AJ, Bell JB, Largaespada DA, Hackett PB (2003) Gene transfer into genomes of human cells by the Sleeping Beauty transposon system. Mol Ther 8:108–117PubMedCrossRefGoogle Scholar
  9. Grabher C, Henrich T, Sasado T, Arenz A, Wittbrodt J, Furutani-Seiki M (2003) Transposon-mediated enhancer trapping in medaka. Gene 322:57–66PubMedCrossRefGoogle Scholar
  10. Hackett PB, Ekker SC, Largaespada DA, McIvor RS (2005) Sleeping Beauty transposon-mediated gene therapy for prolonged expression. Adv Genet 54:189–232PubMedCrossRefGoogle Scholar
  11. Ivics Z, Izsvak Z (2004) Transposable elements for transgenesis and insertional mutagenesis in vertebrates: a contemporary review of experimental strategies. Methods Mol Biol 260:255–276PubMedGoogle Scholar
  12. Ivics Z, Hackett PB, Plasterk RH, Izsvak Z (1997) Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91:501–510PubMedCrossRefGoogle Scholar
  13. Izsvak Z, Ivics Z, Plasterk RH (2000) Sleeping Beauty, a wide host-range transposon vector for genetic transformation in vertebrates. J Mol Biol 302:93–102PubMedCrossRefGoogle Scholar
  14. Kroll KL, Amaya E (1996) Transgenic Xenopus embryos from sperm nuclear transplantations reveal FGF signaling requirements during gastrulation. Development 122:3173–3183PubMedGoogle Scholar
  15. Liu G, Cui Z, Aronovich EL, Whitley CB, Hackett PB (2004) Excision of Sleeping Beauty transposons: parameters and applications to gene therapy. J Gene Med 6:574–583PubMedCrossRefGoogle Scholar
  16. Nieuwkoop PD, Faber J (1994) Normal table of Xenopus laevis (Daudin). Elsevier North Holland Publishing Company, AmsterdamGoogle Scholar
  17. Offield MF, Hirsch N, Grainger RM (2000) The development of Xenopus tropicalis transgenic lines and their use in studying lens developmental timing in living embryos. Development 127:1789–1795PubMedGoogle Scholar
  18. Ouatas T, Le Mevel S, Demeneix BA, de Luze A (1998) T3-dependent physiological regulation of transcription in the Xenopus tadpole brain studied by polyethylenimine based in vivo gene transfer. Int J Dev Biol 42:1159–1164Google Scholar
  19. Pan FC, Chen Y, Loeber J, Henningfeld K, Pieler T (2005) I-SceI meganuclease-mediated transgenesis in Xenopus. Dev Dyn 235:247–252Google Scholar
  20. Plasterk RHA, Van Luenen HGAM (2002) The Tc1/mariner family of transposable elements. In: Craig NL et al (eds) Mobile DNA II. ASM Press, Washington, USA, pp 519–531Google Scholar
  21. Sinzelle L, Pollet N, Bigot Y, Mazabraud A (2005) Characterization of multiple lineages of Tc1-like elements within the genome of the amphibian Xenopus tropicalis. Gene 349:187–196PubMedCrossRefGoogle Scholar
  22. Sive HL, Grainger R, Harland R (2000) Early development of Xenopus laevis: a laboratory manual. Cold Spring Harbor Laboratory PressGoogle Scholar
  23. Sparrow DB, Latinkic B, Mohun TJ (2000) A simplified method of generating transgenic Xenopus. Nucleic Acids Res 28:E12PubMedCrossRefGoogle Scholar
  24. Thermes V, Grabher C, Ristoratore F, Bourrat F, Choulika A, Wittbrodt J, Joly JS (2002) I-SceI meganuclease mediates highly efficient transgenesis in fish. Mech Dev 118:91–98PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • L. Sinzelle
    • 1
  • J. Vallin
    • 1
  • L. Coen
    • 2
  • A. Chesneau
    • 1
  • D. Du Pasquier
    • 1
  • N. Pollet
    • 1
  • B. Demeneix
    • 2
  • A. Mazabraud
    • 1
  1. 1.Transgenèse et Génétique des Amphibiens, CNRS UMR 8080, IBAICUniversité Paris-SudOrsay CedexFrance
  2. 2.Département RégulationDéveloppement et Diversité Moléculaire, CNRS UMR 5166Paris Cedex 5France

Personalised recommendations