Transgenic Research

, Volume 15, Issue 4, pp 455–463 | Cite as

Expression of the Newcastle disease virus fusion protein in transgenic maize and immunological studies

  • Octavio Guerrero-Andrade
  • Elizabeth Loza-Rubio
  • Teresa Olivera-Flores
  • Tamás Fehérvári-Bone
  • Miguel Angel Gómez-Lim
Original Paper


Transgenic plants have been employed successfully as a low-cost system for the production of therapeutically valuable proteins, including antibodies, antigens and hormones. Here, we report the expression of the fusion (F) gene of the Newcastle disease virus (NDV) in transgenic maize plants. The expression of the transgene, driven by the maize ubiquitin promoter, caused accumulation of the F protein in maize kernels. The presence of the transgene was verified by Southern and western blots. Feeding chickens with kernels containing the F protein induced the production of antibodies, which conferred protection against a viral challenge. This protection was comparable to that conferred by a commercial vaccine. Possible uses of this plant-based F protein as a potential mucosal vaccine are discussed.


Transgenic plants Recombinant proteins Maize Newcastle disease virus Chickens 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander DJ (1997) Newcastle disease and other avian Paramixoviridae infections. In: Calnek BW, Barnes HJ, Beard CW, Reid WM, Yoder HW (eds) Diseases of poultry Iowa State University Press, Iowa, pp 541–570Google Scholar
  2. Berinstein A, Vazquez-Rovere C, Asurmendi S, Gomez E, Zanetti F, Zabal O, Tozzini A, Grand DC, Taboga O, Calamante G, Barrios H, Hopp E, Carrillo E (2005) Mucosal and systemic immunization elicited by Newcastle disease virus (NDV) transgenic plants as antigens. Vaccine 23:5583–5589PubMedCrossRefGoogle Scholar
  3. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of proteins utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  4. Chen L, Marmey P, Taylor NJ, Brizard JP, Espinoza C, D’Cruz P, Huet H, Zhang S, de Kochko A, Beachy RN, Fauquet CM (1998) Expression and inheritance of multiple transgenes in rice plants. Nat Biotechnol 16:1060–1064PubMedCrossRefGoogle Scholar
  5. Chikwamba R, Cunnick J, Hathaway D, McMurray M, Mason H, Wang K (2002) A functional antigen in a practical crop: LT-B producing maize protects mice against Escherichia coli heat labile enterotoxin (LT) and cholera toxin (CT). Transgen Res 11:479–493CrossRefGoogle Scholar
  6. Chu CC, Wang CC, Sun CS, Hsu C, Yin KC, Chu CY, Bi FY (1975) Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources. Scientia sinica 18:659–668Google Scholar
  7. Christensen AH, Quail PH (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res 5:213–218PubMedCrossRefGoogle Scholar
  8. Delaney D, Jilka J, Barker D, Irwin P, Poage M, Woodard S, Horn M, Vinas A, Beifuss K, Barker M, Wiggins B, Drees C, Harkey R, Nikolov Z, Hood EE, Howard J (2002) Production of aprotinin in transgenic maize seeds for the pharmaceutical and cell culture markets. In: Vasil IK (ed) Plant biotechnology 2002 and beyond. Kluwer, Dordrecht, pp 393–394Google Scholar
  9. Dus Santos MJ, Wigdorovitz A (2005) Transgenic plants for the production of veterinary vaccines. Immunol Cell Biol 83:229–238PubMedCrossRefGoogle Scholar
  10. Erickson GA, Brugh M, Beard CW (1980) Viscerotropic velogenic Newcastle disease in pigeons: clinical disease and immunization. Avian Dis 24:256–267CrossRefGoogle Scholar
  11. Faye L, Boulaflous A, Benchanane M, Gomord V, Michaud D (2005) Protein modifications in the plant secretory pathway: current status and practical implications in molecular pharming. Vaccine 23:1770–1778PubMedCrossRefGoogle Scholar
  12. Fischer R, Stoger E, Schillberg S, Christou P, Twyman RM (2004) Plant-based production of biopharmaceuticals. Curr Op Plant Biol 7:152–158CrossRefGoogle Scholar
  13. Hood EE, Witcher DR, Maddock S, Meyer T, Baszczynski C, Bailey M, Flynn P, Register J, Marshall L, Bond D, Kulisek E, Kusnadi A, Evangelista R, Nikolov Z, Wooge C, Mehigh RJ, Hernan R, Kappel WK, Ritland D, Ping Li Ch, Howard JA (1997) Commercial production of avidin from transgenic maize: characterization of transformant, production, processing, extraction and purification. Mol Breed 3:291–306CrossRefGoogle Scholar
  14. Howard JA (2004) Commercialization of plant-based vaccines from research and development to manufacturing. Anim Health Res Rev 5:243–245PubMedCrossRefGoogle Scholar
  15. Kamiya N, Niikura M, Ono M, Kai Ch, Matsuura Y, Mikami T (1994) Protective effect of individual glycoproteins of Newcastle disease virus expressed in insect cells: the fusion protein derived from avirulent strain had lower protective efficacy. Virus Res 32:373–379PubMedCrossRefGoogle Scholar
  16. Kapczynski DR, King DJ (2002) Protection of chickens against overt clinical disease and determination of viral shedding following vaccination with commercially available Newcastle disease virus vaccines upon challenge with highly virulent virus from the California 2002 exotic Newcastle disease outbreak. Vaccine 23:3424–3433CrossRefGoogle Scholar
  17. Kapczynski DR, Tumpey TM (2003) Development of a virosome vaccine for Newcastle disease virus. Avian Dis 47:578–587PubMedCrossRefGoogle Scholar
  18. King DJ (1999) A comparison of the onset of protection induced by Newcastle Disease Virus strain B1 and a Fowl Poxvirus recombinant Newcastle disease vaccine to a viscerotropic velogenic Newcastle disease virus challenge. Avian Dis 43:745–755PubMedCrossRefGoogle Scholar
  19. King DJ, Seal BS (1998) Biological and molecular characterization of Newcastle disease virus (NDV) field isolates with comparisons to reference NDV strains. Avian Dis 42:507–516PubMedCrossRefGoogle Scholar
  20. Lamphear BJ, Jilka JM, Kesl L, Welter M, Howard JA, Streatfield SJ (2004) A corn-based delivery system for animal vaccines: an oral transmissible gastroenteritis virus vaccine boosts lactogenic immunity in swine. Vaccine 22:2420–2424PubMedCrossRefGoogle Scholar
  21. Lamphear BJ, Streatfield SJ, Jilka JM, brooks CA, Barker DK, Turner DD, Delaney DE, Garcia M, Wiggins B, Woodard SL, Hood EE, Tizard IR, Lawhorn B, Howard JS (2002) Delivery of subunit vaccines in maize seed. J Control Rel 85:169–180CrossRefGoogle Scholar
  22. Loke CF, Omar AR, Raha AR, Yusoff K (2005) Improved protection from velogenic Newcastle disease virus challenge following multiple immunizations with plasmid DNA encoding for F and HN genes. Vet Immunol Immunopathol 15:259–267CrossRefGoogle Scholar
  23. Maas RA, Komen M, van Diepen M, Oei HL, Claassen IJTM (2003) Correlation of haemagglutinin-neuraminidase and fusion protein content with protective antibody response after immunization with inactivated Newcastle disease vaccines. Vaccine 21:3137–3142PubMedCrossRefGoogle Scholar
  24. McGinnes L, Vergel T, Reitter J, Morrison T (2001) Carbohydrate modifications of the NDV fusion protein heptad repeat domains influence maturation and fusion activity. Virol 283:332–342CrossRefGoogle Scholar
  25. Morrison TG (2003) Structure and function of a paramyxovirus fusion protein. Biochem Biophys Acta 1614:73–84PubMedGoogle Scholar
  26. Peeters BPH, Olav S, Koch LG, Gielkens ALJ (1999) Rescue of Newcastle disease virus from cloned cDNA: evidence that cleavability of the fusion protein is a major determinant for virulence. J Virol 73:5001–5009PubMedGoogle Scholar
  27. Rascón-Cruz Q, Sinagawa-García S, Osuna-Castro JA, Bohorova N, Paredes-López O (2004) Accumulation, assembly, and digestibility of amarantin expressed in transgenic tropical maize. Theor Appl Genet 108:335–342PubMedCrossRefGoogle Scholar
  28. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  29. Scheid A, Choppin PW, (1997) Two disulfide-linked polypeptide chains constitute the active F protein of paramyxoviruses. Virol 80:54–66CrossRefGoogle Scholar
  30. Seal BS, King DJ, Sellers HL (2000) The avian response to Newcastle disease virus. Develop Comp Immunol 24:257–268CrossRefGoogle Scholar
  31. Senne DA, King DJ, Kapczynski DR (2004) Control of Newcastle disease by vaccination. Dev Biol 119:165–170Google Scholar
  32. Sharma JM (1999) Introduction to poultry vaccines and immunity. Adv Vet Med 41:481–494PubMedGoogle Scholar
  33. Shure M, Wessler S, Fedoroff (1983) Molecular identification and isolation of the Waxy locus in maize. Cell 35:225–233PubMedCrossRefGoogle Scholar
  34. Spradbrow PB, Samuel JL (1991) Oral Newcastle disease vaccination with V4 virus in chickens: comparison with other routes. Austral Vet J 68:114–115PubMedGoogle Scholar
  35. Srivastava V, Ow DW (2001) Single-copy transformants of maize obtained through the co-introduction of a recombinase expressing construct. Plant Mol Biol 46:561–566PubMedCrossRefGoogle Scholar
  36. Streatfield SJ, Lane JR, Brooks CA, Barker DK, Poage ML, Jocelyne MM, Lamphear BJ, Drees CF, Jilka JM, Hood EE, Howard JA (2003) Corn as a production system for human and animal vaccines. Vaccine 21:812–815PubMedCrossRefGoogle Scholar
  37. Streatfield SJ, Mayor JM, Barker DK, Brooks CA, Lamphear BJ, Woodard SL, Beifuss KK, Vicuna DV, Massey LA, Horn ME, Delaney DE, Nikolov ZL, Hood EE, Jilka JM, Howard JA (2002) Development of an edible subunit vaccine in corn against enterotoxigenic strains of Escherichia coli. In Vitro Plant 38:11–17CrossRefGoogle Scholar
  38. Taylor J, Christensen L, Gettig R, Goebel J, Bouquet JF, Mickle TR, Paoletti E (1996) Efficacy of a recombinant fowl pox-based Newcastle disease virus vaccine candidate against velogenic and respiratory challenge. Avian Dis 40:173–180PubMedCrossRefGoogle Scholar
  39. Umino Y, Kohama T, Sato TA, Sugiura A (1990) Protective effect of monoclonal antibodies to Newcastle disease virus in passive immunization. J Gen Virol 71:1199–1203PubMedCrossRefGoogle Scholar
  40. Wakita Y, Ofani M, IBa K, Shimada T (1998) Co-integration, co-expression and cosegregation of an unliked selectable marker gene and NtFAD3 gene in transgenic rice plants produced by particle bombardment. Genes Genet Syst 73:219–226PubMedCrossRefGoogle Scholar
  41. Woodard SL, Mayor JM, Bailey MR, Barker DK, Love RT, Lane JR, Delaney DE, McComas-Wagner JM, Mallubhotla HD, Hood EE, Dangott LJ, Tichy SE, Howard JA (2003) Maize (Zea mays)-derived bovine trypsin: characterization of the first large-scale, commercial protein product from transgenic plants. Biotechnol Appl Biochem 38:123–130PubMedCrossRefGoogle Scholar
  42. Zhao Y, Hammond RW (2005) Development of a candidate vaccine for Newcastle disease virus by epitope display in the Cucumber mosaic virus capsid protein. Biotechnol Lett 27:375–382PubMedCrossRefGoogle Scholar
  43. Zhong G-Y, Peterson D, Delaney DE, Bailey M, Witcher DR, Register JC III, Bond D, Li C-P, Marshall L, Kulisek E, Ritland D, Meyer T, Hood EE, Howard JA (1999) Commercial production of aprotinin in transgenic maize seeds. Mol Breed 5:345–356CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Octavio Guerrero-Andrade
    • 1
  • Elizabeth Loza-Rubio
    • 2
  • Teresa Olivera-Flores
    • 3
  • Tamás Fehérvári-Bone
    • 4
  • Miguel Angel Gómez-Lim
    • 1
  1. 1.Departamento de Ingeniería Genética de PlantasCinvestav Campus GuanajuatoIrapuato, GuanajuatoMéxico
  2. 2.Centro Nacional de Investigaciones Disciplinarias en Microbiología AnimalINIFAP. Carretera FederalColonia Palo AltoMéxico DF
  3. 3.Facultad de Química, Conjunto E, Laboratorio 116Paseo de la Investigación Científica, Universidad Nacional Autónoma de MéxicoMéxico DF
  4. 4.Departamento de Producción Animal: Aves. Facultad de Medicina Veterinaria y ZootecniaUniversidad Nacional Autónoma de MéxicoMéxico DF

Personalised recommendations