Transgenic Research

, Volume 14, Issue 4, pp 449–462 | Cite as

Risk analysis for plant-made vaccines

  • Dwayne D. Kirk
  • Kim McIntosh
  • Amanda M Walmsley
  • Robert K. D. Peterson
Article

Abstract

The production of vaccines in transgenic plants was first proposed in 1990 however no product has yet reached commercialization. There are several risks during the production and delivery stages of this technology, with potential impact on the environment and on human health. Risks to the environment include gene transfer and exposure to antigens or selectable marker proteins. Risks to human health include oral tolerance, allergenicity, inconsistent dosage, worker exposure and unintended exposure to antigens or selectable marker proteins in the food chain. These risks are controllable through appropriate regulatory measures at all stages of production and distribution of a potential plant-made vaccine. Successful use of this technology is highly dependant on stewardship and active risk management by the developers of this technology, and through quality standards for production, which will be set by regulatory agencies. Regulatory agencies can also negatively affect the future viability of this technology by requiring that all risks must be controlled, or by applying conventional regulations which are overly cumbersome for a plant production and oral delivery system. The value of new or replacement vaccines produced in plant cells and delivered orally must be considered alongside the probability and severity of potential risks in their production and use, and the cost of not deploying this technology – the risk of continuing with the status quo alternative.

Keywords

edible vaccine regulation risk transgenic plant 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arakawa, T, Yu, J, Chong, DK, Hough, J, Engen, PC, Langridge, WH 1998A plant-based cholera toxin B subunit-insulin fusion protein protects against the development of autoimmune diabetesNat Biotechnol16934938CrossRefPubMedGoogle Scholar
  2. Barone, KS, Tolarova, DD, Ormsby, I, Doetschman, T, Michael, JG 1998Induction of oral tolerance in TGF-beta 1 null miceJ Immunol161154160PubMedGoogle Scholar
  3. Carrillo, C, Wigdorovitz, A, Oliveros, PI, Zamorano, AM, Sadir, AM, Salinas, GJ, Escribano, JM, Borca, MV 1998Protective immune respon to foot-and-mouth disease virus with VP1 expressed in transgenic plantsJ Virol7216881690PubMedGoogle Scholar
  4. Castanon, S, Marin, MS, Martin-Alonso, JM, Boga, JA, Casais, R, Humara, JM, Ordas, RJ, Parra, F 1999Immunization with potato plants expressing VP60 protein protects against rabbit hemorrhagic disease virusJ Virol7344524455PubMedGoogle Scholar
  5. Castanon, S, Martin-Alonso, JM, Marin, MS, Boga, JA, Alonso, P, Parra, F, Ordas, R 2002The effect of the promoter on expression of VP60 gene from rabbit hemorrhagic disease virus in potato plantsPlant Sci1628795CrossRefGoogle Scholar
  6. Center for Food Safety and Nutrition (1994) FDA BACKGROUNDER: Biotechnology of Food. United States Food and Drug Administration. BG 94-4. May 18, 1994. http://www.cfsan.fda.gov/~lrd/biotechn.html, Last accessed 24 March 2005.Google Scholar
  7. Conko, G 2003Safety, risk and the precautionary principle: rethinking precautionary approaches to the regulation of transgenic plantsTransgenic Res12639647CrossRefPubMedGoogle Scholar
  8. Curtiss, R,3rd 1999Genetically modified plants for use as oral immunogensMucosal Immunology Update71012Google Scholar
  9. Curtiss R, 3rd and Cardineau GA (1990) Oral immunization by transgenic plants. World Patent Application WO 90/02484. Washington University (Assignee)..Google Scholar
  10. DiMasi, JA, Hansen, RW, Grabowski, HG 2003The price of innovation: new estimates of drug development costsJ Health Econ22151185CrossRefPubMedGoogle Scholar
  11. Fujihashi, K, Dohi, T, Kweon, MN, McGhee, JR, Koga, T, Cooper, MD, Tonegawa, S, Kiyono, H 1999gammadelta T cells regulate mucosally induced tolerance in a dose-dependent fashionInt Immunol1119071916PubMedGoogle Scholar
  12. Ghosh, S, Malhotra, P, Lalitha, PV, Guha-Mukherjee, S, Chauhan, VS 2002Expression of Plasmodium falciparum C-terminal region of merozoite surface protein (PfMSP119), a potential malaria vaccine candidate, in tobaccoPlant Sci162335343CrossRefGoogle Scholar
  13. Goklany, I 2001aPrecaution without perversity: a comprehensive application of the precautionary principle to genetically modified cropsBiotechnol Law Rep20377396CrossRefGoogle Scholar
  14. Goklany, I 2001bThe Precautionary Principle: A Critical Appraisal of Environmental Risk AssessmentCato InstituteWashington, DCGoogle Scholar
  15. Gomez, N, Wigdorovitz, A, Castanon, S, Gil, F, Ordas, R, Borca, MV, Escribano, JM 2000Oral immunogenicity of the plant derived spike protein from swine-transmissible gastroenteritis coronavirusArch Virol14517251732CrossRefPubMedGoogle Scholar
  16. Haq, TA, Mason, HS, Clements, JD, Arntzen, CJ 1995Oral immunization with a recombinant bacterial antigen produced in transgenic plantsScience268714716PubMedGoogle Scholar
  17. Howard, JA, Donnelly, KC 2004A quantitative safety assessment model for transgenic protein products produced in agricultural cropsJ Agr Environ Ethics17545558CrossRefGoogle Scholar
  18. Jaffe, G 2004Regulating transgenic crops: a comparative analysis of different regulatory processesTransgenic Res13519CrossRefPubMedGoogle Scholar
  19. Kapusta, J, Modelska, A, Figlerowicz, M, Pniewski, T, Letellier, M, Lisowa, O, Yusibov, V, Koprowski, H, Plucienniczak, A, Legocki, AB 1999A plant-derived edible vaccine against hepatitis B virusFASEB J1317961799PubMedGoogle Scholar
  20. Kirk, DD, Rempel, R, Pinkhasov, J, Walmsley, AM 2004Application of Quillaja saponaria extracts as oral adjuvants for plant-made vaccinesExpert Opin Biol Ther4947958CrossRefPubMedGoogle Scholar
  21. Kirk DD, Vonhof WM, Eibner J, Mason HS, and Zhang X (2003) Model production of a potent plant-made vaccine. NFID Sixth annual conference on vaccine research, Arlington, VA, May 5–7.Google Scholar
  22. Kirk DD and Webb SR (2005) The next 15 years: taking plant-made vaccines beyond proof of concept. Immunol Cell Biol 83: 248–256.Google Scholar
  23. Lightman, ASarewitz, DDesser, C eds. 2003Living with the Genie: Essays on Technology and the Quest for Human MasteryIsland PressWashington, D.CGoogle Scholar
  24. Liu, L, Kuchroo, VK, Weiner, HL 1999B7.2 (CD86) but not B7.1 (CD80) costimulation is required for the induction of low dose oral toleranceJ Immunol16322842290PubMedGoogle Scholar
  25. Ma, S, Huang, Y, Yin, Z, Menassa, R, Brandle, JE, Jevnikar, AM 2004Induction of oral tolerance to prevent diabetes with transgenic plants requires glutamic acid decarboxylase (GAD) and IL-4Proc Natl Acad Sci USA10156805685CrossRefPubMedGoogle Scholar
  26. Ma, SW, Zhao, DL, Yin, ZQ, Mukherjee, R, Singh, B, Qin, HY, Stiller, CR, Jevnikar, AM 1997Transgenic plants expressing autoantigens fed to mice to induce oral immune toleranceNat Med3793796CrossRefPubMedGoogle Scholar
  27. Mason, HS, Haq, TA, Clements, JD, Arntzen, CJ 1998Edible vaccine protects mice against Escherichia coli heat-labile enterotoxin (LT): potatoes expressing a synthetic LT-B geneVaccine1613361343CrossRefPubMedGoogle Scholar
  28. Mason, HS, Lam, DM, Arntzen, CJ 1992Expression of hepatitis B surface antigen in transgenic plantsProc Natl Acad Sci USA891174511749PubMedGoogle Scholar
  29. Peterson RKD, (2002). How bad times how often: Risk as science. Agbiosafety. University of Nebraska-Lincoln. http://agbiosafety.unl.edu/riskasscience.shtml, Last accessed 24 March 2005.Google Scholar
  30. Peterson, RKD, Arntzen, CJ 2004On risk and plant-based biopharmaceuticalsTrends Biotechnol226466CrossRefPubMedGoogle Scholar
  31. Prakash, CS 1996Edible vaccines and antibody producing plantsBiotechnol Dev Monit271013Google Scholar
  32. Ratliff, A 2003Biotechnology and pharmaceutical R&D and licensing trends: You pays your money and takes your chancesJ Commercial Biotechnol105459Google Scholar
  33. Rigano MM, Alvarez ML, Pinkhasov J, Jin Y, Sala F, Arntzen CJ and Walmsley AM (2004) Production of a fusion protein consisting of the enterotoxigenic Escherichia coli heat-labile toxin B subunit and a tuberculosis antigen in Arabidopsis thaliana. Plant Cell Rep 22: 502–508.Google Scholar
  34. Presidential/Congressional Commission on Risk Assessment and Risk Management (1997) Risk Assessment and Risk Management in Regulatory Decision-Making. Final Report, Volume 2.Google Scholar
  35. Tackaberry, ES, Prior, F, Bell, M, Tocchi, M, Porter, S, Mehic, J, Ganz, PR, Sardana, R, Altosaar, I, Dudani, A 2003Increased yield of heterologous viral glycoprotein in the seeds of homozygous transgenic tobacco plants cultivated undergroundGenome46521526CrossRefPubMedGoogle Scholar
  36. Tacket CO, Clements JD, Wasserman SS and Streatfield SJ (2003) Immunogenicity of a recombinant bacterial antigen delivered in transgenic corn. In NFID sixth annual conference on vaccine research, Arlington, VA, May 5–7.Google Scholar
  37. Tacket, CO, Mason, HS, Losonsky, G, Clements, JD, Levine, MM, Arntzen, CJ 1998Immunogenicity in humans of a recombinant bacterial antigen delivered in a transgenic potatoNat Med4607609CrossRefPubMedGoogle Scholar
  38. Tacket, CO, Mason, HS, Losonsky, G, Estes, MK, Levine, MM, Arntzen, CJ 2000Human immune responses to a novel norwalk virus vaccine delivered in transgenic potatoesJ Infect Dis182302305CrossRefPubMedGoogle Scholar
  39. Tacket, CO, Pasetti, MF, Edelman, R, Howard, JA, Streatfield, S 2004Immunogenicity of recombinant LT-B delivered orally to humans in transgenic cornVaccine2243854389CrossRefPubMedGoogle Scholar
  40. Thanavala, Y, Mahoney, M, Pal, S, Scott, A, Richter, L, Natarajan, N, Goodwin, P, Arntzen, CJ, Mason, HS 2005Immunogenicity in humans of an edible vaccine for hepatitis BProc Natl Acad Sci USA10233783382CrossRefPubMedGoogle Scholar
  41. Twyman, RM, Schillberg, S, Fischer, R 2005Transgenic plants in the biopharmaceutical marketExpert Opin Emerg Drugs10185218CrossRefPubMedGoogle Scholar
  42. USDA–APHIS (2004) Transcript of Agriculture Secretary Ann M. Veneman’s remarks regarding Biotechnology Regulations. Washington, D.C. January 22, 2004. http://www. aphis.usda.gov/lpa/issues/biotechcomp/Transcript_of_Biotech _7DB94.doc, Last accessed 24 March 2005.Google Scholar
  43. Walmsley, AM, Alvarez, ML, Jin, Y, Kirk, DD, Lee, SM, Pinkhasov, J, Rigano, MM, Arntzen, CJ, Mason, HS 2003aExpression of the B subunit of Escherichia coli heat-labile enterotoxin as a fusion protein in transgenic tomatoPlant Cell Rep2110201026CrossRefGoogle Scholar
  44. Walmsley AM, Rowland L, Kirk DD, Miller TJ and Mason HS (2003b) Efficacy of an edible, plantderived immunocontraceptive vaccine in mice and voles. In NFID Sixth annual conference on vaccine research, Arlington, VA, May 5–7.Google Scholar
  45. Yu, J, Langridge, WH 2001A plant-based multicomponent vaccine protects mice from enteric diseasesNat Biotechnol19548552CrossRefPubMedGoogle Scholar
  46. Yusibov, V, Hooper, DC, Spitsin, SV, Fleysh, N, Kean, RB, Mikheeva, T, Deka, D, Karasev, A, Cox, S, Randall, J, Koprowski, H 2002Expression in plants and immunogenicity of plant virus-based experimental rabies vaccineVaccine2031553164CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Dwayne D. Kirk
    • 1
  • Kim McIntosh
    • 1
  • Amanda M Walmsley
    • 1
  • Robert K. D. Peterson
    • 2
  1. 1.The Biodesign Institute and School of Life SciencesArizona State UniversityTempeUSA
  2. 2.Agricultural and Biological Risk AssessmentMontana State UniversityBozemanUSA

Personalised recommendations