Transgenic Research

, Volume 14, Issue 4, pp 429–440 | Cite as

Hahb-4, a sunflower homeobox-leucine zipper gene, is a developmental regulator and confers drought tolerance to Arabidopsis thaliana plants

  • Carlos Alberto Dezar
  • Gabriela Marisa Gago
  • Daniel Héctor González
  • Raquel Lía ChanEmail author


Homeodomain-leucine zipper proteins constitute a family of transcription factors found only in plants. Hahb-4 is a member of Helianthus annuus (sunflower) subfamily I. It is regulated at the transcriptional level by water availability and abscisic acid. In order to establish if this gene plays a functional role in drought responses, transgenic Arabidopsis thaliana plants that overexpress Hahb-4 under the control of the 35S Cauliflower Mosaic Virus promoter were obtained. Transformed plants show a specific phenotype: they develop shorter stems and internodes, rounder leaves and more compact inflorescences than their non-transformed counterparts. Shorter stems and internodes are due to a lower rate in cell elongation rather than to a cell division. Transgenic plants were more tolerant to water stress conditions, showing improved development, a healthier appearance and higher survival rates than wild-type plants. Indeed, either under normal or drought conditions, they produce approximately the same seed weight per plant as wild-type plants under normal growth conditions. Plants transformed with a construct that bears the Hahb-4 promoter fused to gusA show reporter gene expression in defined cell-types and developmental stages and are induced by drought and abscisic acid. Since Hahb-4 is a transcription factor, we propose that it may participate in the regulation of the expression of genes involved in developmental responses of plants to desiccation.


drought tolerance HD-Zip homeodomain-leucine zipper inducible promoter plant homeodomain sunflower transcription factor water stress 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Almoguera, C, Coca, MA, Jordano, J 1993Tissue-specific expression of heat-shock proteins in response to water stressPlant J4947958CrossRefGoogle Scholar
  2. Ausubel, FM, Brent, R, Kingston, RE, Moore, DD, Seidman, JG, Smith, JA,  et al. 1983Current Protocols in Molecular BiologyJohn Wiley & SonsNYGoogle Scholar
  3. Bray, EA 1997Plant responses to water deficitTrends Plant Sci24854CrossRefGoogle Scholar
  4. Carabelli, M, Sessa, G, Baima, S, Morelli, G, Ruberti, I 1993The Arabidopsis Athb-2 and -4 genes are strongly induced by far-red-rich lightPlant J4469479CrossRefPubMedGoogle Scholar
  5. Carpenter CD and Simon AE (1998) Preparation of RNA. In: J Martinez-Zapater and J Salinas (eds), Arabidopsis Protocols, Methods in Molecular Biology (Vol. 82, pp. 85–89), Humana Press Inc., Totowa, NJ, USAGoogle Scholar
  6. Chan, RL, Gago, GM, Palena, CM, Gonzalez, DH 1998Homeoboxes in plant developmentBiochim Biophys Acta1442119PubMedGoogle Scholar
  7. Clough, SJ, Bent, AF 1998Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thalianaPlant J16735743CrossRefPubMedGoogle Scholar
  8. Coca, MA, Almoguera, C, Thomas, TL, Jordano, J 1996Differential regulation of small heat shock genes in plants: analysis of a water-stress-inducible and developmentally activated sunflower promoterPlant Mol Biol31863876CrossRefPubMedGoogle Scholar
  9. Dixon DC and Klessig DF (1995) Immunolocalisation of proteins in fixed and embedded plant tissues. In: Maliga P, Kles-sig DF, Cashmore AR, Gruissem W and Varner JE (eds), (pp. 101-106) Cold Spring Harbor Laboratory Press.Google Scholar
  10. Doyle, JJ, Doyle, JL 1987A rapid DNA isolation procedure for small quantities of fresh leaf tissuePhytochem Bull191115Google Scholar
  11. Fütterer, J, Hohn, T 1996Translation in plants – rules and exceptionsPlant Mol Biol32159189CrossRefPubMedGoogle Scholar
  12. Gago, GM, Almoguera, C, Jordano Gonzalez, J, DH, , Chan, RL 2002Hahb-4, a homeobox leucine zipper gene potentially involved in abscisic acid-dependent responses to water stress in sunflowerPlant Cell Environ25633640CrossRefGoogle Scholar
  13. González, DH, Valle, EM, Gago, G, Chan, RL 1997Interaction between proteins containing homeodomains asso-ciated to leucine zippers from sunflowerBiochem Biophys Acta1351137149PubMedGoogle Scholar
  14. Haake, V, Cook, D, Riechmann, JL, Pineda, O, Thomashow, MF, Zhang, JZ 2002Transcription Factor CBF4 is a regulator of drought adaptation in ArabidopsisPlant Physiol130639648CrossRefPubMedGoogle Scholar
  15. Himmelbach, A, Hoffmann, T, Leube, H, Hohener, B, Grill, E 2002Homeodomain protein ATHB6 is a target of the protein phosphatase ABI1 and regulates hormone responses in ArabidopsisEMBO J2130293038CrossRefPubMedGoogle Scholar
  16. Hjellström, M, Olsson, ASB, Engström, P, Söderman, EM 2003Constitutive expression of the water deficit-inducible homeobox gene ATHB7 in transgenic Arabidopsis causes a suppression of stem elongation growthPlant Cell Environ2611271134CrossRefGoogle Scholar
  17. Hsieh, T-H, Lee, J-T, Yang, P-T, Chiu, L-H, Charmg, Y-Ym, Wabg, Y-C, Chan, M-T 2002aHeterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomatoPlant Physiol12910861094CrossRefGoogle Scholar
  18. Hsieh, T-H, Lee, J-T, Charmg, Y-Y, Chan, M-T 2002bTomato plants ectopically expressing arabidopsis CBF1 show enhanced resistance to water deficit stressPlant Physiol130618626CrossRefGoogle Scholar
  19. Höfgen, R, Willmtzer, L 1988Storage of competent cells for Agrobacterium transformationNucl Acids Res169977Google Scholar
  20. Jefferson, RA, Kavanagh, TA, Bevan, MW 1987GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plantsEMBO J2039013907Google Scholar
  21. Johannesson, H, Wang, Y, Engström, P 2001DNA-binding and dimerisation preferences of Arabidopsis homeodomain-leucine zipper transcription factors in vitroPlant Mol Biol456373CrossRefPubMedGoogle Scholar
  22. Kang, J-Y, Choi, H-I, Kim, S-Y 2002Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signalingPlant Cell14343357CrossRefPubMedGoogle Scholar
  23. Kasuga, M, Liu, Q, Miura, S, Yamaguchi-Shinozaki, K, Shinozaki, K 1999Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factorNat Biotechnol17287291CrossRefPubMedGoogle Scholar
  24. Kasuga, M, Miura, S, Shinozaki, K, Yamaguchi-Shinozaki, K 2004A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought and low-temperature stress tolerance in tobacco by gene transferPlant Cell Physiol45346350CrossRefPubMedGoogle Scholar
  25. Kasukabe, Y, He, L, Nada, K, Misawa, S, Ihara, I, Tachibana, S 2004Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thalianaPlant Cell Physiol45712722CrossRefPubMedGoogle Scholar
  26. Kim, JC, Lee, SH, Cheong, YH, Yoo, CM, Lee, SI, Chun, HJ, Yun, DJ, Hong, JC, Lee, SY, Lim, CO, Cho, MJ 2001A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plantsPlant J25247259CrossRefPubMedGoogle Scholar
  27. Lee, YH, Chun, JY 1998A new homeodomain-leucine zipper gene from Arabidopsis thaliana induced by water stress and abscisic acid treatmentPlant Mol Biol37377384CrossRefPubMedGoogle Scholar
  28. Leung, J, Giraudat, J 1998Abscisic acid signal transductionAnnu Plant Physiol Plant Mol Biol49199222CrossRefGoogle Scholar
  29. Mattsson, J, Söderman, E, Svenson, M, Borkird, C, Engström, P 1992A new homeobox-leucine zipper gene from Arabidopsis thalianaPlant Mol Biol1810191022CrossRefPubMedGoogle Scholar
  30. Olsson, ASB, Engström, P, Söderman, E 2004The homeobox genes ATHB7 and ATHB12 encode potential regulators of growth in response to water deficit in ArabidopsisPlant Mol Biol55663677CrossRefPubMedGoogle Scholar
  31. Palena, CM, Gonzalez, DH, Chan, RL 1999A monomer diner equilibrium modulates the interaction of the sunflower homeodomain leucine-zipper protein Hahb-4 with DNABiochem J3418187CrossRefPubMedGoogle Scholar
  32. Pellegrineschi, A, Reynolds, M, Pacheco, M, Brito, RM, Almeraya, R, Yamaguchi-Shinozaki, K, Hoisington, D 2004Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditionsGenome47493500CrossRefPubMedGoogle Scholar
  33. Polidoros, AN, Mylona, PV, Scandalios, JG 2001Transgenic tobacco plants expressing the maize Cat2 gene have altered catalase levels that affect plant–pathogen interactions and resistance to oxidative stressTrans Res10555569CrossRefGoogle Scholar
  34. Ruberti, I, Sessa, G, Lucchetti, S, Morelli, G 1991A novel class of proteins containing a homeodomain with a closely linked leucine zipper motifEMBO J1017871791PubMedGoogle Scholar
  35. Schena, M, Davis, RW 1992HD-Zip protein members of Arabidopsis homeodomain protein superfamilyProc Natl Acad Sci USA8938943898PubMedGoogle Scholar
  36. Schena, M, Lloyd, AM, Davis, RW 1993The HAT4 gene of Arabidopsis encodes a developmental regulatorGenes Dev7367379PubMedGoogle Scholar
  37. Sessa, G, Morelli, G, Ruberti, I 1993The Athb-1 and -2 HD-Zip domains homodimerize forming complexes of different DNA binding specificitiesEMBO J1235073517PubMedGoogle Scholar
  38. Shinozaki, K, Yamaguchi- Shinozaki, K 2000Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signalling pathwaysCurr Opin Plant Biol3217223PubMedGoogle Scholar
  39. Shinozaki, K, Yamaguchi-Shinozaki, K 1997Gene expression and signal transduction in water-stress responsePlant Physiol115327334CrossRefPubMedGoogle Scholar
  40. Skriver, K, Mundy, J 1990Gene expression in response to abscisic acid and osmotic stressPlant Cell2503512CrossRefPubMedGoogle Scholar
  41. Söderman, E, Hjellström, M, Fahleson, J, Engström, P 1999The HD-Zip gene ATHB6 in Arabidopsis is expressed in developing leaves, roots and carpels and up-regulated by water deficit conditionsPlant Mol Biol4010731083CrossRefPubMedGoogle Scholar
  42. Söderman, E, Mattsson, J, Engström, P 1996The Arabidopsis homeobox gene ATHB-7 is induced by water deficit and by abscisic acidPlant J10375381CrossRefPubMedGoogle Scholar
  43. Söderman, E, Mattsson, J, Svenson, M, Borkird, C, Engström, P 1994Expression patterns of novel genes encoding homeodomain leucine-zipper proteins in Arabidopsis thalianaPlant Mol Biol26145154CrossRefPubMedGoogle Scholar
  44. Suzuki, M, Tahahashi, T, Komeda, Y 2002Formation of Corymb-like inflorescences due to delay in bolting and flower development in the corymbosa2 mutant of ArabidopsisPlant Cell Physiol43298306CrossRefPubMedGoogle Scholar
  45. Tilahun, A, Guenzi, AC, Martin, B, Cushman, J 2003Tolerance of mannitol-accumulating transgenic wheat to water stress and salinityPlant Physiol13117481755CrossRefPubMedGoogle Scholar
  46. Torii, KU, Misukawa, N, Oosumi, T, Matsuura, Y, Yokoyama, R, Whittie, RF, Komeda, Y 1996The arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeatsPlant Cell8735746CrossRefPubMedGoogle Scholar
  47. Umezawa, T, Yoshida, R, Maruyama, K, Yamaguchi-Shinozaki, K, Shinozaki, K 2004SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thalianaProc Natl Acad Sci USA1011730617311CrossRefPubMedGoogle Scholar
  48. Uno, Y, Furihata, T, Abe, H, Yoshida, R, Shinozaki, K, Yamaguchi-Shinozaki, K 2000Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditionsProc Nat Acad Sci USA971163211637CrossRefPubMedGoogle Scholar
  49. Xu, D, Duan, X, Wang, B, Hong, B, Ho, T-H D, Wu, R 1996Expression of a late embryogenesis abundant protein gene HVA1, from barley confers tolerance to water deficit and salt stress in transgenic ricePlant Physiol110249257PubMedGoogle Scholar
  50. Yi, SY, Kim, JH, Joung, YH, Lee, S, Kim, WT, Yu, SH, Choi, D 2004The pepper transcription factor CaPF1 confers pathogen and freezing tolerance m ArabidopsisPlant Physiol13628622874CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Carlos Alberto Dezar
    • 1
  • Gabriela Marisa Gago
    • 1
    • 2
  • Daniel Héctor González
    • 1
  • Raquel Lía Chan
    • 1
    Email author
  1. 1.Facultad de Bioquímica y Ciencias BiológicasUniversidad Nacional del LitoralSanta FeArgentina
  2. 2.Area de MicrobiologíaIBRRosarioArgentina

Personalised recommendations