Transgenic Research

, Volume 15, Issue 2, pp 181–195 | Cite as

Consequences of Transferring Three Sorghum Genes for Secondary Metabolite (Cyanogenic Glucoside) Biosynthesis to Grapevine Hairy Roots

  • T. K. Franks
  • K. S. Powell
  • S.  Choimes
  • E. Marsh
  • P. Iocco
  • B. J. Sinclair
  • C. M. Ford
  • R. van Heeswijck
Article

Abstract

A multigenic trait (biosynthesis of the secondary metabolite, dhurrin cyanogenic glucoside) was engineered de novo in grapevine (Vitis vinifera L.). This follows a recent report of transfer of the same trait to Arabidopsis (Arabidopsis thaliana) using three genetic sequences from sorghum (Sorghum bicolor): two cytochrome P450-encoding cDNAs (CYP79A1 and CYP71E1) and a UDPG-glucosyltransferase-encoding cDNA (sbHMNGT). Here we describe the two-step process involving whole plant transformation followed by hairy root transformation, which was used to transfer the same three sorghum sequences to grapevine. Transgenic grapevine hairy root lines that accumulated transcript from none, one (sbHMNGT), two (CYP79A1 and CYP71E1) or all three transgenes were recovered and characterisation of these lines provided information about the requirements for dhurrin biosynthesis in grapevine. Only lines that accumulated transcripts from all three transgenes had significantly elevated cyanide potential (up to the equivalent of about 100 mg HCN  kg−1 fresh weight), and levels were highly variable. One dhurrin-positive line was tested and found to release cyanide upon maceration and can therefore be considered ‘cyanogenic’. In in vitro dual co-culture of this cyanogenic hairy root line or an acyanogenic line with the specialist root-sucking, gall-forming, aphid-like insect, grapevine phylloxera (Daktulosphaira vitifoliae, Fitch), there was no evidence for protection of the cyanogenic plant tissue from infestation by the insect. Consistently high levels of dhurrin accumulation may be required for this to occur. The possibility that endogenous grapevine gene expression is modulated in response to engineered dhurrin biosynthesis was investigated using microarray analysis of 1225 grapevine ESTs, but differences in patterns of gene expression associated with dhurrin-positive and dhurrin-negative phenotypes were not identified.

Keywords

cyanogenic glucoside grapevine hairy root microarray plant–pest interaction secondary metabolism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Askani, A, Beiderbeck, R 1991In vitro propagation of Dactylosphaera vitifolii SHIMER (Homoptera: Phylloxeridae) on shoot and root cultures of a Vitis hybridVitis30223232Google Scholar
  2. Bak, S, Olsen, CE, Halkier, BA, Møller, BL 2000Transgenic tobacco and arabidopsis plants expressing the two multifunctional sorghum cytochrome P450 enzymes, CYP79A1 and CYP71E1, are cyanogenic and accumulate metabolites derived from intermediates in dhurrin biosynthesisPlant Physiol12314371448CrossRefPubMedGoogle Scholar
  3. Bak, S, Olsen, CE, Petersen, BL, Moller, BL, Halkier, BA 1999Metabolic engineering of p-hydroxybenzylglucosinolate in Arabidopsis by expression of the cyanogenic CYP79A1 from Sorghum bicolorPlant J20663671CrossRefPubMedGoogle Scholar
  4. Busk, PK, Møller, BL 2002Dhurrin synthesis in sorghum is regulated at the transcriptional level and induced by nitrogen fertilization in older plantsPlant Physiol12912221231CrossRefPubMedGoogle Scholar
  5. Conn, EE 1981

    Cyanogenic glycosides

    Stumpf, PKConn, EE eds. The Biochemistry of Plants. A Comprehensive TreatiseAcademic Press, IncNew York479500
    Google Scholar
  6. Cooke, JEK, Brown, KA, Wu, R, Davis, JM 2003Gene expression associated with N-induced shifts in resource allocation in poplarPlant Cell Environ26757770CrossRefGoogle Scholar
  7. Corrie, AM, Crozier, RH, Heeswijck, R, Hoffmann, AA 2002Clonal reproduction and population genetic structure of grape phylloxera, Daktulosphaira vitifoliae, in AustraliaHeredity88203211CrossRefPubMedGoogle Scholar
  8. Deibner, L 1967Sur la présence des substances cyanophores dans certains organes de la vigne. Isolement et dosage spectrophotométrique de l’acide cyanohydrique libéréChim Anal – Paris4990104Google Scholar
  9. Dritschilo, W, Krummel, J, Nafus, D, Pimentel, D 1979Herbivorous insects colonising cyanogenic and acyanogenic Trifolium repensHeredity424956Google Scholar
  10. Ford, CM, Høj, PB 1998Multiple glucosyltransferase activities in the grapevine Vitis vinifera LAust J Grape Wine Res44858Google Scholar
  11. Franks, TK, Hayasaka, Y, Choimes, S, Heeswijck, R 2005Cyanogenic glucosides in grapevine: polymorphism, identification and developmental patternsPhytochemistry66165173CrossRefPubMedGoogle Scholar
  12. Franks, T, He, DG, Thomas, MR 1998Regeneration of transgenic Vitis vinifera L. Sultana plants: genotypic and phenotypic analysisMol Breeding4321333CrossRefGoogle Scholar
  13. Gleadow, RM, Woodrow, IE 2002Constraints on effectiveness of cyanogenic glycosides in herbivore defenseJ Chem Ecol2813011313CrossRefPubMedGoogle Scholar
  14. Gleave, AP 1992A versatile binary vector system with a T-DNA organisational structure conducive to efficient integration of cloned DNA into the plant genomePlant Mol Biol2012031207CrossRefPubMedGoogle Scholar
  15. Granett, J, Goheen, AC, Lider, LA, White, JJ 1987Evaluation of grape rootstocks for resistance to type A and type B grape phylloxeraAm J Enol Viticult38298300Google Scholar
  16. Gribaudo, I, Schubert, A, Camino, C 1995Establishment of grapevine axenic root lines by inoculation with Agrobacterium rhizogenesAdv Hort Sci28791Google Scholar
  17. Guellec, V, David, C, Branchard, M, Tempé, J 1990Agrobacterium rhizogenes mediated transformation of grapevine (Vitis vinifera L.)Plant Cell Tiss Org20211215Google Scholar
  18. Hansen, KS, Kristensen, C, Tattersall, DB, Jones, PR, Olsen, CE, Bak, S, Møller, BL 2003The in vitro substrate regiospecificity of recombinant UGT85B1, the cyanohydrin glucosyltransferase from Sorghum bicolorPhytochemistry64143151CrossRefPubMedGoogle Scholar
  19. Haseloff, J, Siemering, KR, Prasher, DC, Hodge, S 1997Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightlyProc Natl Acad Sci USA9421222127CrossRefPubMedGoogle Scholar
  20. Iocco, P, Franks, T, Thomas, MR 2001Genetic transformation of major wine grape cultivars of Vitis vinifera LTransgenic Res10105112CrossRefPubMedGoogle Scholar
  21. Jones, DA 1998Why are so many food plants cyanogenicPhytochemistry47155162CrossRefPubMedGoogle Scholar
  22. Jones, PR, Andersen, MD, Nielsen, JS, Høj, PB, Møller, BL 2000

    The biosynthesis, degradation, transport and possible function of cyanogenic glucosides

    Ibrahim, RVarin, LDeLuca, VRomeo, JT eds. Recent Advances in Phytochemistry. The Biosynthesis, Degradation, Transport and Possible Function of Cyanogenic GlucosidesElsevier PressNew York191247
    Google Scholar
  23. Jones PR, Møller BL and Høj PB (1999) The UDP-glucose: p-hydroxymandelonitrile-O-glucosyltransferase that catalyzes the last step in synthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor. The Journal of Biological Chemistry (50): 35483–35491.Google Scholar
  24. Kellow, AV, Corrie, AM, Heeswijck, R 1999Surface sterilisation of phylloxera eggs for investigating grapevine–phylloxera interactions in tissue cultureAust J Grape Wine R52728Google Scholar
  25. Kellow, AV, McDonald, G, Corrie, AM, Heeswijck, R 2002In vitro assessment of grapevine resistance to two populations of phylloxera from Australian vineyardsAust J Grape Wine R8109116Google Scholar
  26. Kooter, JM, Matzke, MA, Meyer, P 1999Listening to the silent genes: transgene silencing, gene regulation and pathogen controlTrends Plant Sci4340347CrossRefPubMedGoogle Scholar
  27. Kristensen, C, Morant, M, Olsen, CE, Ekstrøm, CT, Galbraith, DW, Møller, BL,  et al. 2005Metabolic engineering of dhurrin in transgenic Arabidopsis plants with marginal inadvertent effects on the metabolome and transcriptomeProc Natl Acad Sci USA10217791784CrossRefPubMedGoogle Scholar
  28. Lupo, R, Martell, GP, Castellano, MA, Boscia, D, Savino, V 1994Agrobacterium rhizogenes – transformed plant roots as a source of grapevine viruses for purificationPlant Cell Tiss Org36291301CrossRefGoogle Scholar
  29. Mattanovich, D, Rüker, F, Câmara Machado, A, Laimer, M, Regner, F, Steinkellner, H,  et al. 1989Efficient transformation of Agrobacterium spp. by electroporationNucl Acids Res176747PubMedGoogle Scholar
  30. Mauro, MC, Toutain, S, Walter, B, Pinck, LO, Coutosthevenot, P, Deloire, A,  et al. 1995High efficiency regeneration of grapevine plants transformed with the GFLV coat protein genePlant Sci11297106CrossRefGoogle Scholar
  31. Møller, BL, Seigler, DS 1999

    Biosynthesis of cyanogenic glycosides, cyanolipids, and related compounds

    Singh, BK eds. Plant Amino AcidsMarcel DekkerNew York563609
    Google Scholar
  32. Morant, M, Bak, S, Møller, BL, Werck-Reichhart, D 2003Plant cytochromes P450: tools for pharmacology, plant protection and phytoremediationCurr Opin Biotechnol14151162PubMedGoogle Scholar
  33. Nahrstedt, A 1985Cyanogenic compounds as protecting agents for organismsPlant Syst Evol1503547CrossRefGoogle Scholar
  34. Nakano, M, Hoshino, Y, Mii, M 1994Regeneration of transgenic plants of grapevine (Vitis vinifera L.) via Agrobacterium rhizogenes-mediated transformation of embryogenic calliJ Exp Bot45649656Google Scholar
  35. Perl, A, Lotan, O, Abuabied, M, Holland, D 1996Establishment of an Agrobacterium-mediated transformation system for (Vitis vinifera L.): the role of antioxidants during grape–Agrobacterium interactionsNat Biotechnol14624628CrossRefPubMedGoogle Scholar
  36. Poulton, JE 1990Cyanogenesis in plantsPlant Physiol94401405Google Scholar
  37. Rathjen, AH, Robinson, SP 1992Aberrant processing of polyphenol oxidase in a variegated grapevine mutantPlant Physiol9916191625Google Scholar
  38. Robinson, ME 1930Cyanogenesis in plantsBiol Rev5126141Google Scholar
  39. Schenk, PM, Kazan, K, Wilson, I, Anderson, JP, Richmond, T, Somerville, SC, Manners, JM 2000Coordinated plant defense responses in Arabidopsis revealed by microarray analysisProc Natl Acad Sci USA971165511660CrossRefPubMedGoogle Scholar
  40. Scorza, R, Cordts, JM, Gray, DJ, Gonsalves, D, Emershad, RL, Ramming, DW 1996Producing transgenic ‘Thompson Seedless’ grape (Vitis vinifera L.) plantsJ Am Soc Hort Sci121616619Google Scholar
  41. Scorza, R, Cordts, JM, Ramming, DW, Emershad, RL 1995Transformation of grape (Vitis vinifera L.) zygotic-derived somatic embryos and regeneration of transgenic plantsPlant Cell Rep14589592CrossRefGoogle Scholar
  42. Seigler, DS 1998

    Cyanogenic glycosides and cyanolipids

    Siegler, DS eds. Plant Secondary MetabolismKluwer Academic PublishersBoston 273299
    Google Scholar
  43. Tattersall, DB, Bak, S, Jones, PR, Olsen, CE, Nielsen, JK, Hansen, ML,  et al. 2001Resistance to an herbivore through engineered cyanogenic glucoside synthesisScience29318261828CrossRefPubMedGoogle Scholar
  44. Thomas, MR, Matsumoto, S, Cain, P, Scott, NS 1993Repetitive DNA of grapevine: classes present and sequences suitable for cultivar identificationTheor Appl Genet86173180Google Scholar
  45. Torregrosa, L, Bouquet, A 1997Agrobacterium rhizogenes and A. tumefaciens co-transformation to obtain grapevine hairy roots producing the coat protein of grapevine chrome mosaic neopvirusPlant Cell Tiss Org495362CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • T. K. Franks
    • 1
    • 2
  • K. S. Powell
    • 1
    • 3
  • S.  Choimes
    • 1
    • 2
  • E. Marsh
    • 1
    • 2
    • 5
  • P. Iocco
    • 1
    • 4
  • B. J. Sinclair
    • 2
  • C. M. Ford
    • 1
    • 2
  • R. van Heeswijck
    • 1
    • 2
  1. 1.Cooperative Research Centre for ViticultureGlen OsmondAustralia
  2. 2.School of Agriculture and WineThe University of AdelaideGlen OsmondAustralia
  3. 3.Department of Primary IndustriesPrimary Industries Research Victoria, Rutherglen CentreRutherglenAustralia
  4. 4.CSIRO Plant Industry, Horticulture UnitGlen OsmondAustralia
  5. 5.Donald Danforth Plant Science CenterSt LouisUSA

Personalised recommendations