Transgenic Research

, Volume 14, Issue 3, pp 299–311

The expression level of threonine synthase and cystathionine-γ-synthase is influenced by the level of both threonine and methionine in Arabidopsis plants

Article

Abstract

The biosynthesis pathways of the essential amino acids methionine and threonine diverge from O-phosphohomoserine, an intermediate metabolite in the aspartate family of amino acids. Thus, the enzymes cystathionine-γ-synthase (CGS) in the methionine pathway and threonine synthase (TS), the last enzyme in the threonine pathway, compete for this common substrate. To study this branching point, we overexpressed TS in sense and antisense orientation in Arabidopsis plants with the aim to study its effect on the level of threonine but more importantly on the methionine content. Positive correlation was found not only between TS expression level and threonine content, but also between TS/threonine and CGS expression level. Plants expressing the sense orientation of TS showed a higher level of threonine, increased expression level of CGS, and a significantly higher level of S-methylmethionine, the transport form of methionine. By contrast, plants expressing the antisense form of TS showed lower levels of threonine and of CGS expression level. In these antisense plants, the methionine level increased up to 47-fold compared to wild-type plants. To study further the effect of threonine on CGS expression level, wild-type plants were irrigated with threonine and control plants were irrigated with methionine or water. While threonine increased the expression level of CGS but reduced that of TS, methionine reduced the expression level of CGS but increased that of TS. This data demonstrate that both methionine and threonine affect the two enzymes at the branching point, thus controlling not only their own level, but also the level of each other. This mechanism probably aids in keeping the levels of these two essential amino acids sufficiently high to support plant growth.

Keywords

amino acid biosynthesis cystathionine-γ-synthase essential amino acids methionine threonine threonine synthase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amir, R, Hacham, Y, Galili, G 2002Cystathionine γ-synthase and threonine synthase operate in concert to regulate carbon flow towards methionine in plantsTrends Plant Sci7153156PubMedGoogle Scholar
  2. Avraham, T, Badani, H, Galili, S, Amir, R 2005Enhanced levels of methionine and cysteine in transgenic alfalfa (Medicago sativa L.) plants overexpressing the Arabidopsis cystathionine γ-synthase genePlant Biotechnol J37180Google Scholar
  3. Azevedo, R, Arruda, P, Turner, WL, Lea, PJ 1997The biosynthesis and metabolism of the aspartate derived amino acids in higher plantsPhytochemistry46395419PubMedGoogle Scholar
  4. Bartlem, D, Lambein, I, Okamoto, T, Itaya, A, Uda, Y, Kijima, O, Tamaki, Y, Nambara, E, Naito, SL 2000Mutation in the threonine synthase gene results in an over-accumulation of soluble methionine in ArabidopsisPlant Physiol123101110PubMedGoogle Scholar
  5. Bieleski, RL, Turner, NA 1996Separation and estimation of amino-acids in crude plant extracts by thin-layer electrophoresis and chromatographyAnal Biochem17278293Google Scholar
  6. Bright, SWJ, Shewry, PR, Miflin, BJ 1978Aspartate kinase and the synthesis of aspartate-derived amino acids in wheatPlanta139119125Google Scholar
  7. Chiba, Y, Ishikawa, M, Kijima, F, Tyson, RH, Kim, J, YamamotoA. Nambara, E, Leustek, T, Wallsgrove, RM, Naito, S 1999Evidence for autoregulation of cystathionine gamma-synthase mRNA stability in ArabidopsisScience28613711374PubMedGoogle Scholar
  8. Chiba, Y, Sakurai, R, Yoshino, M, Ominato, K, Ishikawa, M, Onouchi, H, Naito, S 2003S-adenosyl-l-methionine is an effector in the posttranscriptional autoregulation of the cystathionine gamma-synthase gene in ArabidopsisProc Natl Acad Sci USA1001022510230PubMedGoogle Scholar
  9. Clough, SJ, Bent, AF 1998Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thalianaPlant J16735743PubMedGoogle Scholar
  10. Coruzzi, G, Last, R 2000

    Amino Acids

    Buchanan, B.Gruissem, WJones, RL eds. Biochemistry and Molecular Biology of PlantsAmerican society of plant physiologistsRockville358410
    Google Scholar
  11. Curien, G, Dumas, R, Ravanel, S, Douce, R 1996Characterization of an Arabidopsis thaliana cDNA encoding an S-adenosylmethionine-sensitive threonine synthase from higher plantsFEBS Lett3908590PubMedGoogle Scholar
  12. Curien, G, Job, D, Douce, R, Dumas, R 1998Allosteric activation of Arabidopsis threonine synthase by S-adenosylmethionineBiochemistry371321213221PubMedGoogle Scholar
  13. Curien, G, Ravanel, S, Dumas, R 2003A kinetic model of the branch-point between the methionine and threonine biosynthesis pathways in Arabidopsis thalianaEur J Biochem27046154627PubMedGoogle Scholar
  14. Datko, AH, Giovanelli, J, Mudd, H 1974Homocysteine biosynthesis in green plantsPhosphohomoserine as the physiological substrate for cystathionine. J Biol Chem24911391155Google Scholar
  15. Gakiere, B, Ravanel, S, Droux, M, Douce, R, Job, D 2000

    Methionine synthesis in higher plants: sense strategy applied to cystathionine gamma -synthase and cystathionine beta -lyase in Arabidopsis thaliana

    Brunold, C eds. Sulfur Nutrition and Sulfur Assimilation in Higher PlantsPaul Haupt PublishersBern313315
    Google Scholar
  16. Gakiere, B, Ravanel, S, Droux, M, Douce, R, Job, D 2000Mechanisms to account for maintenance of the soluble methionine pool in transgenic Arabidopsis plants expressing antisense cystathionine gamma-synthase cDNAC R Acad Sci III323841851PubMedGoogle Scholar
  17. Galili, G 1995Regulation of lysine and threonine synthesis Plant Cell7899906Google Scholar
  18. Galili S, Galili G and Amir R (2003) Genetic engineering of amino acid metabolism in plants. In: Bohnert HJ and Nguyen HT (eds). Advances in Plant Biochemistry and Molecular Biology: Bioengineering and Molecular Biology of Plant Pathways. Oxford Elsevier Science LTD (In Press).Google Scholar
  19. Giovanelli, JG 1981Sulfur amino acids in plants: an overviewMethods in Enzymol143419428Google Scholar
  20. Giovanelli, JG, Veluthambi, K, Thompson, GA, Mudd, SH 1984Threonine synthase of Lemna paucicostata Hegelm. 6746Plant Physiol76285292Google Scholar
  21. Hacham, Y, Avraham, T, Amir, R 2002The N-terminal region of Arabidopsis cystathionine gamma synthase plays an important role in methionine metabolismPlant Physiol128454462PubMedGoogle Scholar
  22. Hadjukiewicz, P, Svab, Z, Maliga, P 1994The small, versatile pPZP family of Agrobacterium binary vectors for plant transformationPlant Mol Biol25989994PubMedGoogle Scholar
  23. Hesse, H, Hoefgen, R 2003Molecular aspects of methionine biosynthesisTrends Plant Sci825962PubMedGoogle Scholar
  24. Inba, K, Fujiwara, T, Hayashi, H, Chino, M, Komeda, Y, Naito, S 1994Isolation of an Arabidopsis thaliana mutant, mto1, that overaccumulates soluble methionineTemporal and spatial patterns of soluble methionine accumulation. Plant Physiol104881887Google Scholar
  25. Kim, J, Lee, M, Chalam, R, Martin, M, Leustek, T, Boerjan, W 2002Constitutive overexpression of cystathionine g-synthase in Arabidopsis thaliana leads to accumulation of soluble methionine and S-methylmethioninePlant Physiol12895107PubMedGoogle Scholar
  26. Kim, J, Leustek, T 2000Repression of cystathionine g-synthase in Arabidopsis thaliana produces partial methionine auxotrophy and developmental abnormalitiesPlant Sci151918Google Scholar
  27. Kreft, O, Hoefgen, R, Hesse, H 2003Functional analysis of cystathionine gamma-synthase in genetically engineered potato plantsPlant Physiol13118431854PubMedGoogle Scholar
  28. Laemmli, UK 1970Cleavage of structural proteins during the assembly of the head of bacteriophage T4Nature227680685PubMedGoogle Scholar
  29. Muhitch, M 1997Effects of expressing E. coli threonine synthase in Tobacco (Nicotiana tabacum L.) suspension culture cells on free amino acid levels, aspartate pathway enzyme activities and uptake of aspartate into the cellsJ Plant Physiol1501622Google Scholar
  30. Nikiforova, V, Kempa, S, Zeh, M, Maimann, S, Kreft, O, Casazza, AP, Riedel, K, Tauberger, E, Hoefgen, R, Hesse, H 2002Engineering of cysteine and methionine biosynthesis in potatoAmino Acids22259278PubMedGoogle Scholar
  31. Ravanel, S, Gakiere, B, Job, D, Douce, R 1998Cystathionine gamma-synthase from Arabidopsis thaliana: purification and biochemical characterization of the recombinant enzyme overexpressed in Escherichia coliBiochem J331639648PubMedGoogle Scholar
  32. Shaul, O, Galili, G 1992Increased lysine synthesis in tobacco plants that express high levels of bacterial dihydrodipicolinate synthase in their chloroplastsPlant J2203209Google Scholar
  33. Thompson, GA, Datko, AH, Mudd, SH, Giovanelli, J 1982Methionine biosynthesis in Lemna: Studies on the regulation of cystathionine gamma-synthase, O-phosphohomoserine sulfhydrylase and O-acetylserine sulfhydrylasePlant Physiol6910771083Google Scholar
  34. Zeh, M, Casazza, AP, Kreft, O, Roessner, U, Bieberich, K, Willmitzer, L, Hoefgen, R, Hesse, H 2001Antisense inhibition of threonine synthase leads to high methionine content in transgenic potato plantsPlant Physiol127792802PubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Plant Science LaboratoryMigal – Galilee Technology CenterKiryat ShmonaIsrael
  2. 2.Tel-Hai Academic CollegeUpper GalileeIsrael

Personalised recommendations