Transgenic Research

, Volume 14, Issue 2, pp 145–158 | Cite as

A 470 bp WAP-promoter fragment confers lactation independent, progesterone regulated mammary-specific gene expression in transgenic mice

  • Karoline Lipnik
  • Helga Petznek
  • Ingrid Renner-Müller
  • Monika Egerbacher
  • Angelika Url
  • Brian Salmons
  • Walter H. Günzburg
  • Christine Hohenadl


The ability of a 470 bp sub-fragment of the murine whey acidic protein (WAP) promoter in the context of a retroviral expression plasmid to direct gene expression to mammary epithelial cells was analysed in a number of independent transgenic mouse lines. In contrast to previous findings with the genuine 2.5 kb promoter fragment, our studies revealed a highly mammary gland-specific expression detectable only in non-lactating animals. This suggested a mainly progesterone-regulated activity of the short fragment. Therefore, transgene expression was examined in the progesterone-determined estrous cycle and during pregnancy. In accordance with in vitrodata from stably transfected cell lines, in both situations expression was upregulated at stages associated with high progesterone levels. Taken together these data provide deeper insight into WAP-promoter regulation and stress the usefulness of the shortened fragment for a lactation independent mammary-targeted expression.


hormone regulation mammary-specific expression murine WAP-promoter progesterone transgenic mice 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andres, AC, Schonenberger, CA, Groner, B, Hennighausen, L, LeMeur, M, Gerlinger, P 1987Ha-ras oncogene expression directed by a milk protein gene promoter: tissue specificity, hormonal regulation, and tumor induction in transgenic miceProc Natl Acad Sci USA8412991303PubMedGoogle Scholar
  2. Burdon, T, Sankaran, L, Wall, RJ, Spencer, M, Hennighausen, L 1991aExpression of a whey acidic protein transgene during mammary development. Evidence for different mechanisms of regulation during pregnancy and lactationBiochem J26669096914Google Scholar
  3. Burdon, T, Wall, RJ, Shamay, A, Smith, GH, Hennighausen, L 1991bOver-expression of an endogenous milk protein gene in transgenic mice is associated with impaired mammary alveolar development and a milchlos phenotypeMech Dev366774CrossRefGoogle Scholar
  4. Chalfie, M, Tu, Y, Euskirchen, G, Ward, WW, Prasher, DC 1994Green fluorescent protein as a marker for gene expressionScience263802805PubMedGoogle Scholar
  5. Chen, LH, Bissell, MJ 1989A novel regulatory mechanism for whey acidic protein gene expressionCell Regul14554PubMedGoogle Scholar
  6. Clauss, A, Lilja, H, Lundwall, A 2002A locus on human chromosome 20 contains several genes expressing protease inhibitor domains with homology to whey acidic proteinBiochem J368233242PubMedGoogle Scholar
  7. Demmer, J, Stasiuk, SJ, Grigor, MR, Simpson, KJ, Nicholas, KR 2001Differential expression of the whey acidic protein gene during lactation in the brushtail possum (Trichosurus vulpecula)Biochim Biophys Acta1522187194PubMedGoogle Scholar
  8. Doppler, W, Villunger, A, Jennewein, P, Brduscha, K, Groner, B, Ball, RK 1991Lactogenic hormone and cell type-specific control of the whey acidic protein gene promoter in transfected mouse cellsMol Endocrinol516241632PubMedGoogle Scholar
  9. Gallahan, D, Jhappan, C, Robinson, G, Hennighausen, L, Sharp, R, Kordon, E, Callahan, R, Merlino, G, Smith, GH 1996Expression of a truncated Int3 gene in developing secretory mammary epithelium specifically retards lobular differentiation resulting in tumorigenesisCancer Res5617751785PubMedGoogle Scholar
  10. Günzburg, WH, Salmons, B, Zimmermann, B, Müller, M, Erfle, V, Brem, G 1991A mammary-specific promoter directs expression of growth hormone not only to the mammary gland, but also to Bergman glia cells in transgenic miceMol Endocrinol5123133PubMedGoogle Scholar
  11. Hennighausen, L 1990The mammary gland as a bioreactor: production of foreign proteins in milkProtein Expr Purif138PubMedGoogle Scholar
  12. Hennighausen, L, McKnight, R, Burdon, T, Baik, M, Wall, RJ, Smith, GH 1994Whey acidic protein extrinsically expressed from the mouse mammary tumor virus long terminal repeat results in hyperplasia of the coagulation gland epithelium and impaired mammary developmentCell Growth Differ5607613PubMedGoogle Scholar
  13. Hennighausen, LG, Sippel, AE, Hobbs, AA, Rosen, JM 1982Comparative sequence analysis of the mRNAs coding for mouse and rat whey proteinNucleic Acids Res1037333744PubMedGoogle Scholar
  14. Hennighausen, L, Westphal, C, Sankaran, L, Pittius, CW 1991Regulation of expression of genes for milk proteinsBiotechnology166574PubMedGoogle Scholar
  15. Husler, MR, Kotopoulis, KA, Sundberg, JP, Tennent, BJ, Kunig, SV, Knowles, BB 1998Lactation-induced WAP-SV40 Tag transgene expression in C57BL/6J mice leads to mammary carcinomaTransgenic Res7253263PubMedGoogle Scholar
  16. Ikeda, K, Kato, M, Yamanouchi, K, Naito, K, Tojo, H 2002Novel development of mammary glands in the nursing transgenic mouse ubiquitously expressing WAP geneExp Anim51395399PubMedGoogle Scholar
  17. Inuzuka, H, Yamanouchi, K, Tachi, C, Tojo, H 2001.A transgenic mouse model for investigating the response of the upstream region of whey acidic protein (WAP) gene to various steroid hormonesExp Anim5017PubMedGoogle Scholar
  18. Kolb, AF, Albang, R, Brem, G, Erfle, V, Günzburg, WH, Salmons, B 1995Characterization of a protein that binds a negative regulatory element in the mammary-specific whey acidic protein promoterBiochem Biophys Res Commun21710451052PubMedGoogle Scholar
  19. Kolb, AF, Günzburg, WH, Albang, R, Brem, G, Erfle, V, Salmons, B 1994Negative regulatory element in the mammary specific whey acidic protein promoterJ Cell Biochem56245261PubMedGoogle Scholar
  20. Kosaka, T, Saito, TR, Takahashi, KW 1988Changes in plasma progesterone levels during the estrous cycle and pregnancy in 4-day cyclic miceJikken Dobutsu37351353PubMedGoogle Scholar
  21. Kubo, J, Yamanouchi, K, Naito, K, Tojo, H, Inuzuka, H, Tachi, C 2002Expression of the gene of interest fused to the EGFP-expressing gene in transgenic mice derived from selected transgenic embryos. A transgenic mouse model for investigating the response of the upstream region of whey acidic protein (WAP) gene to various steroid hormonesJ Exp Zool293712718PubMedGoogle Scholar
  22. Li, S, Rosen, JM 1994aDistal regulatory elements required for rat whey acidic protein gene expression in transgenic miceJ Biol Chem2691423514243Google Scholar
  23. Li, S, Rosen, JM 1994bGlucocorticoid regulation of rat whey acidic protein gene expression involves hormone-induced alterations of chromatin structure in the distal promoter regionMol Endocrinol813281335Google Scholar
  24. Li, S, Rosen, JM 1995Nuclear factor I and mammary gland factor (STAT5) play a critical role in regulating rat whey acidic protein gene expression in transgenic miceMol Cell Biol1520632070PubMedGoogle Scholar
  25. Lin, CQ, Dempsey, PJ, Coffey, RJ, Bissell, MJ 1995Extracellular matrix regulates whey acidic protein gene expression by suppression of TGF-alpha in mouse mammary epithelial cells: studies in culture and in transgenic miceJ Cell Biol12911151126PubMedGoogle Scholar
  26. Liu, X, Robinson, GW, Gouilleux, F, Groner, B, Hennighausen, L 1995Cloning and expression of Stat5 and an additional homologue (Stat5b) involved in prolactin signal transduction in mouse mammary tissueProc Natl Acad Sci USA9288318835PubMedGoogle Scholar
  27. McKnight, RA, Spencer, M, Dittmer, J, Brady, JN, Wall, RJ, Hennighausen, L 1995An Ets site in the whey acidic protein gene promoter mediates transcriptional activation in the mammary gland of pregnant mice but is dispensable during lactationMol Endocrinol9717724PubMedGoogle Scholar
  28. Millot, B, Fontaine, ML, Thepot, D, Devinoy, E 2001A distal region, hypersensitive to DNase I, plays a key role in regulating rabbit whey acidic protein gene expressionBiochem J359557565PubMedGoogle Scholar
  29. Millot, B, Montoliu, L, Fontaine, ML, Mata, T, Devinoy E, , Thepot, D 2003Hormone-induced modifications of the chromatin structure surrounding upstream regulatory regions conserved between the mouse and rabbit whey acidic protein genesBiochem J3724152PubMedGoogle Scholar
  30. Mrochen, S, Klein, D, Nikol, S, Smith, JR, Salmons, B, Günzburg, WH 1997Inducible expression of p21WAF-1/CIP-1/SDI- 1 from a promoter conversion retroviral vectorJ Mol Med75820828PubMedGoogle Scholar
  31. Mukhopadhyay, SS, Wyszomierski, SL, Gronostajski, RM, Rosen, JM 2001Differential interactions of specific nuclear factor I isoforms with the glucocorticoid receptor and STAT5 in the cooperative regulation of WAP gene transcriptionMol Cell Biol2168596869PubMedGoogle Scholar
  32. Nicholas, KR, Fisher, JA, Muths, E, Trott, J, Janssens, PA, Reich, C, Shaw, DC 2001Secretion of whey acidic protein and cystatin is down regulated at mid-lactation in the red kangaroo (Macropus rufus)Comp Biochem Physiol A Mol Integr Physiol129851858PubMedGoogle Scholar
  33. Öztürk-Winder, F, Renner, M, Klein, D, Müller, M, Salmons, B, Günzburg, WH 2002The murine whey acidic protein promoter directs expression to human mammary tumors after retroviral transductionCancer Gene Ther9421431PubMedGoogle Scholar
  34. Paleyanda, RK, Zhang, DW, Hennighausen, L, McKnight, RA, Lubon, H 1994Regulation of human protein C gene expression by the mouse WAP promoterTransgenic Res3335343PubMedGoogle Scholar
  35. Ranganathan, S, Simpson, KJ, Shaw, DC, Nicholas, KR 1999The whey acidic protein family: a new signature motif and three-dimensional structure by comparative modelingJ Mol Graph Model1106113134-106.Google Scholar
  36. Schoenenberger, CA, Zuk, A, Groner, B, Jones, W, Andres, AC 1990Induction of the endogenous whey acidic protein (Wap) gene and a Wap-myc hybrid gene in primary murine mammary organoidsDev Biol1327337Google Scholar
  37. Sharp, PE, LaRegina, MC 1998The Laboratory RatCRC PressBoca Raton,FLGoogle Scholar
  38. Simpson, KJ, Bird, P, Shaw, D, Nicholas, K 1998Molecular characterisation and hormone-dependent expression of the porcine whey acidic protein geneJ Mol Endocrinol202735PubMedGoogle Scholar
  39. Simpson, KJ, Ranganathan, S, Fisher, JA, Janssens, PA, Shaw, DC, Nicholas, KR 2000The gene for a novel member of the whey acidic protein family encodes three four-disulfide core domains and is asynchronously expressed during lactationJ Biol Chem2752307423081PubMedGoogle Scholar
  40. Spencer, TE, Bazer, FW 2002Biology of progesterone action during pregnancy recognition and maintenance of pregnancyFront Biosci7d18791898PubMedGoogle Scholar
  41. Thackray, VG, Lieberman, BA, Nordeen, SK 1998Differential gene induction by glucocorticoid and progesterone receptorsJ Steroid Biochem Mol Biol66171178PubMedGoogle Scholar
  42. Thepot, D, Devinoy, E, Fontaine, ML, Hubert, C, Houdebine, LM 1990Complete sequence of the rabbit whey acidic protein geneNucleic Acids Res183641PubMedGoogle Scholar
  43. Wardell, SE, Boonyaratanakornkit, V, Adelman, JS, Aronheim, A, Edwards, DP 2002Jun dimerization protein 2 functions as a progesterone receptor N-terminal domain coactivatorMol Cell Biol2254515466PubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Karoline Lipnik
    • 1
  • Helga Petznek
    • 1
  • Ingrid Renner-Müller
    • 3
  • Monika Egerbacher
    • 2
  • Angelika Url
    • 2
  • Brian Salmons
    • 4
  • Walter H. Günzburg
    • 1
  • Christine Hohenadl
    • 1
    • 4
  1. 1.Research Institute for Virology and BiomedicineAustria
  2. 2.University of Veterinary MedicineViennaAustria
  3. 3.Institute of Molecular Animal Breeding and BiotechnologyLudwig-Maximilian-UniversityMunichGermany
  4. 4.AustrianovaViennaAustria

Personalised recommendations