Transgenic Research

, Volume 13, Issue 6, pp 523–530 | Cite as

Stable transformation of petunia plastids

  • Mikhajlo K. Zubko
  • Elena I. Zubko
  • Karen van Zuilen
  • Peter Meyer
  • Anil Day
Article

Abstract

Plastid transformation results in stably expressed foreign genes, which for most Angiosperms are largely excluded from sperm cells, thereby greatly reducing the risk of foreign gene spread through pollen. Prior to this work, fertile plastid transformants were restricted to tobacco, tomato and Lesquerella . Application of plastid engineering in the important floriculture industry requires the development of stable plastid transformation in a major ornamental plant species such as Petunia hybrida. Here we describe the successful isolation of fertile and stable plastid transformants in a commercial cultivar of P. hybrida (var. Pink Wave). Plastid targeting regions from tobacco were used to integrate aad A and gusA between the acc D and rbc L genes of P. hybrida plastid DNA following particle bombardment of leaves. For three spectinomycin and streptomycin resistant lines, DNA blot analysis confirmed transgene integration into plastid DNA and homoplasmy. Maternal inheritance and homoplasmy resulted in 100 transmission of spectinomycin resistance to progeny after selfing. Plastid transformants expressed the gusA gene uniformly within leaves and to comparable levels in all three lines. Insertion of trait genes in place of gusA coding sequences enables immediate applications of our plastid transformation vector. Establishment of plastid transformation in P. hybrida facilitates a safe and reliable use of this important ornamental plant for research and plant biotechnology.

Keywords

chloroplast genetic engineering floriculture genetically modified petunia plastid transformation EMBL Accessions: AJ276677 AJ578474 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bock, R 2001Transgenic plastids in basic research and plant biotechnologyJ Mol Biol312425438Google Scholar
  2. Corneille, S, Lutz, K, Svab, Z, Maliga, P 2001Efficient elimination of selectable marker genes from the plastid genome by the CRE-lox site-specific recombination systemPlant J27171178Google Scholar
  3. Cornu, A, Dulieu, H 1988Pollen transmission of plastid-DNA under genotypic control in Petunia hybrida HortJ Heredity794044Google Scholar
  4. Daniell, H, Datta, R, Varma, S, Gray, S, Lee, SB 1998Containment of herbicide resistance through genetic engineering of the chloroplast genomeNat Biotechnol16345348Google Scholar
  5. De Cosa, B, Moar, W, Lee, S-B, Miller, M, Daniell, H 2001Overexpression of the Bt cry 2Aa2 operon in chloroplasts leads to the formation of insecticidal crystalsNat Biotechnol197174Google Scholar
  6. Eibl, C, Zou, ZR, Beck, A, Kim, M, Mullet, J, Koop, HU 1999In vivo analysis of plastid psbA, rbcL and rpl32 UTR elements by chloroplast transformation: tobacco plastid gene expression is controlled by modulation of transcript levels and translation efficiencyPlant J19333345Google Scholar
  7. Goldschmidt-Clermont, M 1991Transgenic expression of aminoglycoside adenine transferase in the chloroplast: a selectable marker for site-directed transformation in ChlamydomonasNucl Acids Res1940834089Google Scholar
  8. Hajdukiewicz, PTJ, Gilbertson, L, Staub, JM,  et al. 2001Multiple pathways for Cre/lox-mediated recombination in plastidsPlant J27161170Google Scholar
  9. Hou, BK, Zhou, YH, Wan, LH, Zhang, ZL, Shen, GF, Chen, ZH,  et al. 2003Chloroplast transformation in oilseed rapeTransgenic Res12111114Google Scholar
  10. Huang, CY, Ayliffe, MA, Timmis, JN 2003Direct measurement of the transfer rate of chloroplast DNA into the nucleusNature4227276Google Scholar
  11. Iamtham, S, Day, A 2000Removal of antibiotic resistance genes from transgenic tobacco plastidsNat Biotechnol1811721176Google Scholar
  12. Jefferson, R,  et al. 1987Assaying chimeric genes in plants: the GUS gene fusion systemPlant Mol Biol Rep5387405Google Scholar
  13. Kavanagh, TA, Thanh, ND, Lao, NT, McGrath, N, Peter, SO, Horvath, EM,  et al. 1999Homeologous plastid DNA transformation in tobacco is mediated by multiple recombination eventsGenetics15211111122Google Scholar
  14. Khan, MS, Maliga, P 1999Fluorescent antibiotic resistance marker for tracking plastid transformation in higher plantsNat Biotechnol17910915Google Scholar
  15. Klaus, SMJ, Huang, F-C, Golds, TJ, Koop, HU 2004Generation of marker-free plastid transformants using a transiently cointegrated selection geneNat Biotechnol22225229Google Scholar
  16. Kohler, RH, Cao, J, Zipfel, WR, Webb, WW, Hanson, MR 1997Exchange of protein molecules through connections between higher plant plastidsScience27620392042Google Scholar
  17. Kooter, JM, Matzke, MA, Meyer, P 1999Listening to the silent genes: transgene silencing, gene regulation and pathogen controlTrends Plant Sci4340347Google Scholar
  18. Kota, M, Daniell, H, Varma, S, Garczynski, SF, Gould, F, Moar, WJ 1999Overexpression of the Bacillus thuringiensis (Bt) Cry2Aa2 protein in chloroplasts confers resistance to plants against susceptible and Bt-resistant insectsProc Natl Acad Sci USA9618401845Google Scholar
  19. Lutz, KA, Knapp, JE, Maliga, P 2001Expression of bar in the plastid genome confers herbicide resistancePlant Physiol12515851590Google Scholar
  20. Maliga, P 2003Progress towards commercialization of plastid transformation technologyTrends Biotechnol212028Google Scholar
  21. McBride, KE, Svab, Z, Schaaf, DJ, Hogan, PS, Stalker, DM, Maliga, P 1995Amplification of a chimeric Bacillus gene in chloroplast leads to an extraordinary level of insecticidal protein in tobaccoBio-Technol13362365Google Scholar
  22. Mol, J, Cornish, E, Mason, J, Koes, R 1999Novel coloured flowersCurr Opin Biotechnol10198201Google Scholar
  23. Murashige, T, Skoog, F 1962A revised medium for rapid growth and bioassays with tobacco tissue culturesPhysiol Plant15473497Google Scholar
  24. Nagata, N, Saito, C, Sakai, A, Kuroiwa, H, Kuroiwa, T 1999The selective increase or decrease of organellar DNA in generative cells just after pollen mitosis one controls cytoplasmic inheritancePlanta2095365Google Scholar
  25. Oneill, C, Horvath, GV, Horvath, E, Dix, PJ, Medgyesy, P 1993Chloroplast transformation in plants: polyethylene glycol (PEG) treatment of protoplasts is an alternative to biolistic delivery systemsPlant J3729738Google Scholar
  26. Ruf, S, Hermann, M, Berger, IJ, Carrer, H, Bock, R 2001Stable genetic transformation of tomato plastids and expression of a foreign protein in fruitNat Biotechnol19870875Google Scholar
  27. Short, JM, Fernandez, JM, Sorge, JA, Huse, WD 1988Lambda ZAP–a bacteriophage lamda vector with in vivo excision propertiesNucl Acids Res1675837600Google Scholar
  28. Sidorov, VA, Kasten, D, Pang, SZ, Hajdukiewicz, PTJ, Staub, JM, Nehra, NS 1999Stable chloroplast transformation in potato: use of green fluorescent protein as a plastid markerPlant J19209216Google Scholar
  29. Sikdar, SR, Serino, G, Chaudhuri, S, Maliga, P 1998Plastid transformation in Arabidopsis thalianaPlant Cell Rep182024Google Scholar
  30. Skarjinskaia, M, Svab, Z, Maliga, P 2003Plastid transformation in Lesquerella fendleri, an oilseed BrassicaceaTransgenic Res12115122Google Scholar
  31. Staub, JM, Garcia, B, Graves, J, Hajdukiewicz, PTJ, Hunter, P, Nehra, N.,  et al. 2000High-yield production of a human therapeutic protein in tobacco chloroplastsNat Biotechnol18333338Google Scholar
  32. Stegemann, S, Hartmann, S, Ruf, S, Bock, R 2003High-frequency gene transfer from the chloroplast genome to the nucleusProc Natl Acad Sci USA10088288833Google Scholar
  33. Sugiura, M, Shinozaki, K, Zaita, N, Kusuda, M, Kumano, M 1986Clone bank of the tobacco (Nicotiana tabacum) chloroplast genome as a set of overlapping restriction endonuclease fragments: mapping of 11 ribosomal protein genesPlant Science44211217Google Scholar
  34. Sutton, CA, Zoubenko, OV, Hanson, MR, Maliga, P 1995A plant mitochondrial sequence transcribed in transgenic tobacco chloroplasts is not editedMol Cell Biol1513771381Google Scholar
  35. Svab, Z, Maliga, P 1993High frequency plastid transformation in tobacco by selection for a chimeric aadA geneProc Natl Acad Sci USA90913917Google Scholar
  36. Svab, Z, Hajdukiewicz, P, Maliga, P 1990Stable transformation of plastids in higher plantsProc Natl Acad Sci USA8785268530Google Scholar
  37. Tregoning, JS, Nixon, P, Kuroda, H, Svab, Z, Clare, S, Bowe, ,  et al. 2003Expression of tetanus toxin Fragment C in tobacco chloroplastsNucl Acids Res3111741179Google Scholar
  38. Wakasugi, T, Sugita, M, Tsudzuki, T, Sugiura, M. 1998Updated gene map of tobacco chloroplast DNAPlant Mol Biol Rep16231241Google Scholar
  39. Zubko, E, Adams, CJ, Machaekova, I, Malbeck, J, Scollan, C, Meyer, P 2002Activation tagging identifies a gene from Petunia hybrida responsible for the production of active cytokinins in plantsPlant J29797808Google Scholar
  40. Zubko, MK, Day, A 1998Stable albinism induced without mutagenesis: a model for ribosome-free plastid inheritancePlant J15265271Google Scholar
  41. Zubko, MK, Day, A 2002Differential regulation of genes transcribed by nucleus-encoded plastid RNA polymerase, and DNA amplification, within ribosome-deficient plastids in stable phenocopies of cereal albino mutantsMol Genet Genomics2672737Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Mikhajlo K. Zubko
    • 1
  • Elena I. Zubko
    • 1
  • Karen van Zuilen
    • 1
  • Peter Meyer
    • 2
  • Anil Day
    • 1
  1. 1.School of Biological SciencesThe University of ManchesterManchesterUK
  2. 2.Leeds Institute for Plant Biotechnology and Agriculture (LIBA), Centre for Plant SciencesThe University of LeedsUK

Personalised recommendations