Skip to main content
Log in

Sol–gel Fe/TiO2 Magnetic Catalysts Applied to Selenium Photoreduction

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The risks of selenium (Se) water contamination to human and aquatic life make it important to develop and apply efficient Se removal methods. Selenium photocatalytic reduction is an effective technique for this purpose, but it still suffers from limitations related to the photocatalyst recovery at the end of the process. In the present work, magnetic particles were coated with a titanium dioxide (TiO2) layer, using a sol–gel process, in order to obtain a magnetic recoverable Fe/TiO2 photocatalysts. The catalysts were prepared with different Fe concentrations and with or without thermal treatment, being then characterized by different techniques and applied in the Se photoreduction. Both calcined and non-calcined catalysts presented similar specific surface areas (19–29 m2 g− 1), but the latter showed better results in the photocatalytic tests (100% of Se removal in 15 min using the non-calcined 8% Fe photocatalyst). The photostability test performed using the best catalyst (non-calcined 8% Fe photocatalyst) indicated a decrease in the photoactivity from the second photocatalytic cycle onwards. Besides, the catalysts lost their magnetic properties after being calcined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Institute of Medicine (2000) Dietary reference intakes for vitamin C, vitamin E, selenium, and carotenoids panel on dietary antioxidants and related compounds, subcommittees on upper reference levels of nutrients and interpretation and uses of DRIs. Standing Committee on the Scientif

  2. Prabhu KS, Lei XG (2016) Selenium. Adv Nutr 7:415–417. https://doi.org/10.3945/an.115.010785

    Article  CAS  Google Scholar 

  3. Torres-Vega A, Pliego-Rivero BF, Otero-Ojeda GA et al (2012) Limbic system pathologies associated with deficiencies and excesses of the trace elements iron, zinc, copper, and selenium. Nutr Rev 70:679–692. https://doi.org/10.1111/j.1753-4887.2012.00521.x

    Article  Google Scholar 

  4. Tan LC, Nancharaiah YV, van Hullebusch ED, Lens PNL (2016) Selenium: environmental significance, pollution, and biological treatment technologies. Biotechnol Adv 34:886–907. https://doi.org/10.1016/j.biotechadv.2016.05.005

    Article  CAS  Google Scholar 

  5. Li X, Huang Z, Liu Z et al (2016) In situ photocalorimetry: an alternative approach to study photocatalysis by tracing heat changes and kinetics. Appl Catal B Environ 181:79–87. https://doi.org/10.1016/j.apcatb.2015.07.036

    Article  CAS  Google Scholar 

  6. Lemly AD (2018) Selenium poisoning of fish by coal ash wastewater in Herrington Lake, Kentucky. Ecotoxicol Environ Saf 150:49–53. https://doi.org/10.1016/j.ecoenv.2017.12.013

    Article  CAS  Google Scholar 

  7. Lemly AD (2004) Aquatic selenium pollution is a global environmental safety issue. Ecotoxicol Environ Saf 59:44–56. https://doi.org/10.1016/S0147-6513(03)00095-2

    Article  CAS  Google Scholar 

  8. Huang S, Hua M, Feng J et al (2009) Assessment of selenium pollution in agricultural soils in the Xuzhou District, Northwest Jiangsu, China. J Environ Sci 21:481–487. https://doi.org/10.1016/S1001-0742(08)62295-0

    Article  CAS  Google Scholar 

  9. Abdel-Moati MAR (1998) Speciation of selenium in a Nile Delta lagoon and SE Mediterranean Sea mixing zone. Estuar Coast Shelf Sci 46:621–628. https://doi.org/10.1006/ecss.1997.0307

    Article  CAS  Google Scholar 

  10. Séby F, Potin-Gautier M, Giffaut E et al (2001) A critical review of thermodynamic data for selenium species at 25°C. Chem Geol 171:173–194. https://doi.org/10.1016/S0009-25410000246-1

    Article  Google Scholar 

  11. Nguyen VNH, Beydoun D, Amal R (2005) Photocatalytic reduction of selenite and selenate using TiO2 photocatalyst. J Photochem Photobiol A Chem 171:113–120. https://doi.org/10.1016/j.jphotochem.2004.09.015

    Article  CAS  Google Scholar 

  12. He Y, Xiang Y, Zhou Y et al (2018) Selenium contamination, consequences and remediation techniques in water and soils: a review. Environ Res 164:288–301. https://doi.org/10.1016/j.envres.2018.02.037

    Article  CAS  Google Scholar 

  13. Bora LV, Mewada RK (2017) Visible/solar light active photocatalysts for organic effluent treatment: fundamentals, mechanisms and parametric review. Renew Sustain Energy Rev 76:1393–1421. https://doi.org/10.1016/j.rser.2017.01.130

    Article  CAS  Google Scholar 

  14. Byrne C, Subramanian G, Pillai SC (2018) Recent advances in photocatalysis for environmental applications. J Environ Chem Eng 6:3531–3555. https://doi.org/10.1016/j.jece.2017.07.080

    Article  CAS  Google Scholar 

  15. Zhao X, Zhang G, Zhang Z (2020) TiO2-based catalysts for photocatalytic reduction of aqueous oxyanions: state-of-the-art and future prospects. Environ Int. https://doi.org/10.1016/j.envint.2019.105453

    Article  Google Scholar 

  16. Nu Hoai Nguyen V, Amal R, Beydoun D (2005) Photocatalytic reduction of selenium ions using different TiO2 photocatalysts. Chem Eng Sci 60:5759–5769. https://doi.org/10.1016/j.ces.2005.04.085

    Article  CAS  Google Scholar 

  17. Tan T, Beydoun D, Amal R (2003) Effects of organic hole scavengers on the photocatalytic reduction of selenium anions. J Photochem Photobiol A Chem 159:273–280. https://doi.org/10.1016/S1010-6030(03)00171-0

    Article  CAS  Google Scholar 

  18. Haider AJ, Jameel ZN, Al-Hussaini IHM (2019) Review on: titanium dioxide applications. Energy Procedia 157:17–29. https://doi.org/10.1016/j.egypro.2018.11.159

    Article  CAS  Google Scholar 

  19. Aman N, Mishra T, Hait J, Jana RK (2011) Simultaneous photoreductive removal of copper (II) and selenium (IV) under visible light over spherical binary oxide photocatalyst. J Hazard Mater 186:360–366. https://doi.org/10.1016/j.jhazmat.2010.11.001

    Article  CAS  Google Scholar 

  20. Tan TT, Yip C, Beydoun D, Amal R (2003) Effects of nano-Ag particles loading on TiO2 photocatalytic reduction of selenate ions. Chem Eng J 95:179–186. https://doi.org/10.1016/S1385-8947(03)00103-7

    Article  CAS  Google Scholar 

  21. Tan TT, Beydoun D, Amal R (2003) Photocatalytic reduction of Se(VI) in aqueous solutions in UV/TiO2 system: importance of optimum ratio of reactants on TiO2 surface. J Mol Catal A Chem 202:73–85. https://doi.org/10.1016/S1381-1169(03)00205-X

    Article  CAS  Google Scholar 

  22. Nguyen VNH, Amal R, Beydoun D (2005) Photocatalytic reduction of selenium ions using different TiO2 photocatalysts. Chem Eng Sci 60:5759–5769. https://doi.org/10.1016/j.ces.2005.04.085

    Article  CAS  Google Scholar 

  23. Tan TTY, Zaw M, Beydoun D, Amal R (2002) The formation of nano-sized selenium-titanium dioxide composite semiconductors by photocatalysis. J Nanoparticle Res 4:541–552. https://doi.org/10.1023/A:1022858409731

    Article  CAS  Google Scholar 

  24. Shan AY, Ghazi TIM, Rashid SA (2010) Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis: a review. Appl Catal A Gen 389:1–8. https://doi.org/10.1016/j.apcata.2010.08.053

    Article  CAS  Google Scholar 

  25. Díez AM, Moreira FC, Marinho BA et al (2018) A step forward in heterogeneous photocatalysis: process intensification by using a static mixer as catalyst support. Chem Eng J 343:597–606. https://doi.org/10.1016/j.cej.2018.03.041

    Article  CAS  Google Scholar 

  26. Gad-Allah TA, Kato S, Satokawa S, Kojima T (2009) Treatment of synthetic dyes wastewater utilizing a magnetically separable photocatalyst (TiO2/SiO2/Fe3O4): parametric and kinetic studies. Desalination 244:1–11. https://doi.org/10.1016/j.desal.2008.04.031

    Article  CAS  Google Scholar 

  27. Madhumitha A, Preethi V, Kanmani S (2018) Photocatalytic hydrogen production using TiO2 coated iron-oxide core shell particles. Int J Hydrogen Energy 43:3946–3956. https://doi.org/10.1016/j.ijhydene.2017.12.127

    Article  CAS  Google Scholar 

  28. Gonçalves G, Lenzi MK, Santos OAA, Jorge LMM (2006) Preparation and characterization of nickel based catalysts on silica, alumina and titania obtained by sol-gel method. J Non Cryst Solids 352:3697–3704. https://doi.org/10.1016/j.jnoncrysol.2006.02.120

    Article  CAS  Google Scholar 

  29. Nadal JM, dos Anjos CG, Novatski A et al (2019) Adapalene-loaded poly(ε-caprolactone) microparticles: physicochemical characterization and in vitro penetration by photoacoustic spectroscopy. PLoS ONE 14:1–20. https://doi.org/10.1371/journal.pone.0213625

    Article  CAS  Google Scholar 

  30. Murruni L, Leyva G, Litter MI (2007) Photocatalytic removal of Pb(II) over TiO2 and Pt-TiO2 powders. Catal Today 129:127–135. https://doi.org/10.1016/j.cattod.2007.06.058

    Article  CAS  Google Scholar 

  31. Chen D, Ray AK (2001) Removal of toxic metal ions from wastewater by semiconductor photocatalysis. Chem Eng Sci 56:1561–1570. https://doi.org/10.1016/S0009-2509(00)00383-3

    Article  CAS  Google Scholar 

  32. Campbell AD (1992) A critical survey of hydride generation techniques in atomic spectroscopy (technical report). Pure Appl Chem 64:227–244. https://doi.org/10.1351/pac199264020227

    Article  CAS  Google Scholar 

  33. Takase I, Pereira HB, Luna AS et al (2002) A geração química de vapor em espectrometria atômica. Quim Nova 25:1132–1144. https://doi.org/10.1590/s0100-40422002000700014

    Article  CAS  Google Scholar 

  34. Fu H, Sun S, Yang X et al (2018) A facile coating method to construct uniform porous α-Fe2O3@TiO2 core-shell nanostructures with enhanced solar light photocatalytic activity. Powder Technol 328:389–396. https://doi.org/10.1016/j.powtec.2018.01.067

    Article  CAS  Google Scholar 

  35. Nasralla N, Yeganeh M, Astuti Y et al (2013) Structural and spectroscopic study of Fe-doped TiO2 nanoparticles prepared by sol-gel method. Sci Iran 20:1018–1022. https://doi.org/10.1016/j.scient.2013.05.017

    Article  CAS  Google Scholar 

  36. Imran M, Shaik AH, Ansari AR et al (2018) Synthesis of highly stable γ-Fe2O3 ferrofluid dispersed in liquid paraffin, motor oil and sunflower oil for heat transfer applications. RSC Adv 8:13970–13975. https://doi.org/10.1039/c7ra13467c

    Article  CAS  Google Scholar 

  37. Imran M, Abutaleb A, Ashraf Ali M et al (2020) UV light enabled photocatalytic activity of α-Fe2O3 nanoparticles synthesized via phase transformation. Mater Lett 258:126748. https://doi.org/10.1016/j.matlet.2019.126748

    Article  CAS  Google Scholar 

  38. Bond GC (1987) Heterogeneous catalysis: principles and applications, 2 nd. Clarendon Press-Oxford, New York

    Google Scholar 

  39. Thompson WA, Perier C, Maroto-Valer MM (2018) Systematic study of sol-gel parameters on TiO2 coating for CO2 photoreduction. Appl Catal B Environ 238:136–146. https://doi.org/10.1016/j.apcatb.2018.07.018

    Article  CAS  Google Scholar 

  40. Spurr RA, Myers H (1957) Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer. Anal Chem 29:760–762. https://doi.org/10.1021/ac60125a006

    Article  CAS  Google Scholar 

  41. Hirano M, Joji T, Inagaki M, Iwata H (2004) Direct formation of iron(III)-doped titanium oxide (anatase) by thermal hydrolysis and its structural property. J Am Ceram Soc 87:35–41. https://doi.org/10.1111/j.1151-2916.2004.tb19941.x

    Article  CAS  Google Scholar 

  42. Mohammadi MR, Fray DJ (2012) Low temperature nanocrystalline TiO2–Fe2O3 mixed oxide by a particulate sol–gel route: physical and sensing characteristics. Phys E Low-Dimens Syst Nanostruct 46:43–51. https://doi.org/10.1016/j.physe.2012.09.002

    Article  CAS  Google Scholar 

  43. Moniz SJA, Shevlin SA, An X, Guo Z (2014) Fe2O3–TiO2 nanocomposites for enhanced charge separation and photocatalytic activity. Chem Eur J. https://doi.org/10.1002/chem.201403489

    Article  Google Scholar 

  44. Sharma B, Boruah PK, Yadav A, Das MR (2018) TiO2–Fe2O3 nanocomposite heterojunction for superior charge separation and the photocatalytic inactivation of pathogenic bacteria in water under direct sunlight irradiation. J Environ Chem Eng 6:134–145. https://doi.org/10.1016/j.jece.2017.11.025

    Article  CAS  Google Scholar 

  45. Jordan N, Ritter A, Scheinost AC et al (2014) Selenium(IV) uptake by maghemite (γ-Fe2O3). Environ Sci Technol 48:1665–1674. https://doi.org/10.1021/es4045852

    Article  CAS  Google Scholar 

  46. Damle R, Ramesh KP, Sahoo B (2019) XRD, internal field-NMR and Mössbauer spectroscopy study of composition, structure and magnetic properties of iron oxide phases in iron ores. Integr Med Res 8:2192–2200. https://doi.org/10.1016/j.jmrt.2019.01.022

    Article  CAS  Google Scholar 

  47. Ahmadzadeh M, Romero C, Mccloy J (2018) Magnetic analysis of commercial hematite, magnetite, and their mixtures. AIP Adv. https://doi.org/10.1063/1.5006474

    Article  Google Scholar 

  48. De Araujo GC, De Souza AO, Do Carmo Rangel M, Pinheiro EA (2002) Efeito da temperatura no desempenho catalítico de óxidos de ferro contendo cobre e alumínio. Quim Nova 25:181–185. https://doi.org/10.1590/s0100-40422002000200002

    Article  Google Scholar 

  49. Oliveira LCA, Fabris JD, Pereira MC (2013) Óxidos de ferro e suas aplicações em processos catalíticos: Uma revisão. Quim Nova 36:123–130. https://doi.org/10.1590/S0100-40422013000100022

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was conducted using the equipment of the C2MMa UTFPR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Lenzi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuziki, M.E.K., Abreu, E., De Carvalho, A.E. et al. Sol–gel Fe/TiO2 Magnetic Catalysts Applied to Selenium Photoreduction. Top Catal 63, 1131–1144 (2020). https://doi.org/10.1007/s11244-020-01276-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-020-01276-1

Keywords

Navigation