Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effect of Gold Nanoparticles on MnOx/TiO2 Nanostructures for Improving the CO Oxidation at Low Temperature

  • 75 Accesses

Abstract

Gold nanoparticles dispersed on MnOx/TiO2 were used to perform the oxidation of carbon monoxide at low temperatures. Remarkable dispersion of gold nanoparticles under hydrogen treatment was obtained, mainly in Au–MnOx/TiO2 catalysts with 2 wt% Au and 5 wt% Mn, where the Au nanoparticles displayed average sizes of 1–3 nm. The addition of Au nanoparticles to the MnOx/TiO2 catalysts promoted both the CO oxidation from 0 °C and stability at room temperature. This behavior could be attributed to the synergistic interactions between Au0/Au1+ and Mn3+/Mn4+ on the Au–MnOx/TiO2 catalyst surface.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Craciun R (2003) Structure and redox properties of MnOx/yttrium-stabilized zirconia (YSZ) catalyst and its used in CO and CH4 oxidation. Appl Catal A 243(1):67–79

  2. 2.

    Tang XF, Xu YD, Shen WJ (2008) Promoting effect of copper on the catalytic activity of MnOx–CeO2 mixed oxide for complete oxidation of benzene. Chem Eng J 144(2):175–180

  3. 3.

    Pappas DK, Boningari T, Boolchand P, Smirniotis PG (2016) Novel manganese oxide confined interweaved titania nanotubes for the low-temperature selective catalytic reduction (SCR) of NOx by NH3. J Catal 334:1–13

  4. 4.

    Domínguez M, Navarro P, Romero-Sarria F, Frías D, Cruz S, Delgado J, Centeno MA, Montes M, Odriozola JA (2009) Fibrous MnO2 nanoparticles with (2x2) tunnel structures. Catalytic activity in the total oxidation of volatile organic compounds. J Nanosci Nanotechnol 9:3837–3842

  5. 5.

    Hernández W, Centeno MA, Romero-Sarria F, Ivanova S, Montes M, Odriozola JA (2010) Modified cryptomelane-type manganese dioxide nanomaterials for preferential oxidation of CO in the presence of hydrogen. Catal Today 157:160–165

  6. 6.

    Wang L, Huang X, Liu Q, Liu Y, Cao Y, He H, Fan K, Zhuang J (2008) Gold nanoparticles deposited on manganese (III) oxide as novel efficient catalyst for low temperature CO oxidation. J Catal 259:66–74

  7. 7.

    Chang LH, Sasirekha N, Chen YW, Wang WJ (2006) Preferential oxidation of CO in H2 stream over Au/MnO2CeO2 catalysts. Ind Eng Chem Res 45:4927–4935

  8. 8.

    Ying Tsai J, Hsing Chao J, Hsun Lin C (2009) Low temperature carbon monoxide oxidation over gold nanoparticles supported on sodium titanate nanotubes. J Mol Catal A 298:115–124

  9. 9.

    Tu Y, Luo J, Meng M, Wang G, He J (2009) Ultrasonic-assisted synthesis of highly active catalyst Au/MnOx–CeO2 used for the preferential oxidation of CO in H2-rich stream. Int J Hydrogen Energy 34:3743–3754

  10. 10.

    Romero SF, Penkova A, Martinez L, Centeno MA, Hadjivanov K, Odriozola JA (2008) Role of water in the CO oxidation reaction on Au/CeO2: modification of the surface properties. Appl Catal B 84:119–124

  11. 11.

    Luegnaruemitchai A, Thoa D, Osuwan S, Gulari E (2005) A comparative study of Au/MnOx and Au/FeOx catalysts for the catalytic oxidation of CO in hydrogen rich stream. Int J Hydrogen Energy 30:981–987

  12. 12.

    Qian K, Huang W, Jiang Z, Sun H (2007) Anchoring highly active gold nanoparticles on SiO2 by CoOx additive. J Catal 248:137–141

  13. 13.

    Stephen A, Hashmi K, Hutchings GJ (2007) Gold catalysis. Angew Chem Int Ed 45:7896–7936

  14. 14.

    Haruta M, Tsubota S, Kobayashi T, Kageyama H, Genet MJ, Delmon B (1993) Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3, and Co3O4. J Catal 144:175–192

  15. 15.

    Schubert MM, Hackenberg S, van Veen AC, Muhler M, Plzak V, Behm RJ (2001) CO oxidation over supported gold catalysts “inert” and “active” support materials and their role for the oxygen supply during reaction. J Catal 197:113–122

  16. 16.

    Ettireddy PR, Ettireddy N, Mamedov S, Boolchand P, Smirniotis PG (2007) Surface characterization studies of TiO2 supported manganese oxide catalysts for low temperature SCR of NO with NH3. Appl Catal B 76:123–134

  17. 17.

    Carno J, Ferradon M, Bjornbom E, Jaras S (1997) Mixed manganese oxide/platinum catalysts for total oxidation of model gas from wood boilers. Appl Catal A 155:265–281

  18. 18.

    Sandoval A, Aguilar A, Louis C, Traverse A, Zanella R (2011) Bimetallic Au–Ag/TiO2 catalyst prepared by deposition–precipitation: high activity and stability in CO oxidation. J Catal 281:40–49

  19. 19.

    Tan TH, Scott J, Ng YH, Taylor RA, Aguey-Zinsou A-F, Amal R (2016) Understanding plasmon and band gap photoexcitation effects on the thermal-catalytic oxidation of ethanol by TiO2-supported Gold. ACS Catal 2:1870–1879

  20. 20.

    Shao G (2009) Red shift in manganese and iron-doped TiO2: a DFT+U analysis. J Phys Chem C 113:6800–6808

  21. 21.

    Sanjinés R, Tang H, Berger H, Gozzo F, Margaritondo G (1994) Electronic structure of anatase TiO2 oxide. J Appl Phys 75:2945–2951

  22. 22.

    Schumacher B, Plzak V, Cai J, Behm RJ (2005) Reproducibility of highly active Au/TiO2 catalyst preparation and conditioning. Catal Lett 101:215–224

  23. 23.

    Kapteijn F, Dick van Langeveld J, Mouljin JA, Andreini A, Vuurman MA, Turek AM, Jehng JM, Wachs IE (1994) Alumina-supported manganese oxide catalysts: I. characterization: effect of precursor and loading. J Catal 150:94–104

  24. 24.

    Akita T, Lu P, Ichikawa S, Tanaka K, Haruta M (2001) Analytical TEM study on the dispersion of Au nanoparticles in Au/TiO2 catalyst prepared under various temperatures. Surf Interface Anal 31:73–78

  25. 25.

    Chang LH, Sasirekha N, Rajesh B, Chen YW (2007) CO oxidation on ceria-and manganese oxide-supported gold catalysts. Sep Purif Technol 58:211–218

  26. 26.

    Bond GC, Thompson DT (1999) Catalysis by gold. Catal Rev Sci Eng 41:319–388

Download references

Acknowledgements

The authors want to thank V. Maturano for the technical support. J.C. Medina acknowledges DGAPA-CIC-UNAM for his postdoctoral scholarship.

Funding

This study was funded by the Consejo Nacional de Ciencia y Tecnología (CONACYT) through the PDNPN1216 and CB-18269 grants, Dirección General de Asuntos del Personal Académico (DGAPA-UNAM) through the PAPIIT IN103719 Grant and the Mexican Petroleum Institute via the Molecular Engineering Program (Project D.00477).

Author information

Correspondence to Rodolfo Zanella.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Camposeco, R., Castillo, S., Nava, N. et al. Effect of Gold Nanoparticles on MnOx/TiO2 Nanostructures for Improving the CO Oxidation at Low Temperature. Top Catal (2020). https://doi.org/10.1007/s11244-019-01220-y

Download citation

Keywords

  • Deposition–precipitation
  • Sol–gel
  • CO oxidation
  • Gold nanoparticles
  • MnOx