Advertisement

Selective Ethylene Dimerization into 2-Butenes Using Homogeneous and Supported Nickel(II) 2-Iminopyridine Catalysts

  • Artem A. AntonovEmail author
  • Nina V. Semikolenova
  • Igor E. Soshnikov
  • Evgenii P. Talsi
  • Konstantin P. BryliakovEmail author
Original Paper
  • 47 Downloads

Abstract

In this work, we report a series of novel nickel(II) dibromide and dichloride complexes with 2-iminopyridine and 2-iminoquinoline ligands bearing electron-withdrawing substituents (F, Cl, CF3), that have demonstrated high ethylene dimerization activity [up to 19.2 × 106 g of oligomers·(mol Ni)−1 h−1] in the presence of MAO or Et2AlCl, affording predominantly a mixture of 1-butene and cis- and trans-2-butene (C4 selectivity varies from 89 to 100%; 2-butenes selectivity in the C4 fraction approaches 96%). The effects of ligand substituents and the cocatalyst nature on the activity and selectivity of the nickel(II) complexes in ethylene dimerization have been established. Several nickel complexes were supported on silica-alumina and the resulting heterogeneous catalysts were probed towards ethylene dimerization. These catalysts also afford 2-butenes, with the activity and C4 selectivity being comparable to that of homogeneous catalysts.

Graphic Abstract

Keywords

Ethylene 2-Iminopyridine Electron-withdrawing Nickel 2-Butene Dimerization 

Notes

Acknowledgements

This work was conducted using the equipment of the Center of Collective Use “National Center of Catalysis Research” (Project AAAA-A17-117041710085-9).

Supplementary material

11244_2019_1208_MOESM1_ESM.pdf (158 kb)
Supplementary material 1 (PDF 159 kb)

References

  1. 1.
    Kotov SV, Kankaeva IN (1994) Chem Technol Fuels Oil 30:240–245CrossRefGoogle Scholar
  2. 2.
    Bender M (2014) ChemBioEng 1:136–147CrossRefGoogle Scholar
  3. 3.
    McGuinness DS (2011) Chem Rev 111:2321–2341PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Forestiere A, Olivier-Bourbigou H, Saussine L (2009) Oil Gas Sci Technol 64:649–667CrossRefGoogle Scholar
  5. 5.
    Shimizu A (1981) Synth Org Chem Japan 39:554–560CrossRefGoogle Scholar
  6. 6.
    Al-Jarallah AM, Anabtawi JA, Siddiqui MAB, Aitani AM (1992) Al-Sa’doun AW. Catal Today 14:1–124CrossRefGoogle Scholar
  7. 7.
    Al-Sa’doun AW (1993) Appl Catal A 105:1–40CrossRefGoogle Scholar
  8. 8.
    Al-Sherehy FA (1996) Stud Surf Sci Catal 100:515–523CrossRefGoogle Scholar
  9. 9.
    Popoff N, Mazoyer E, Pelletier J, Gauvin RM, Taoufik M (2013) Chem Soc Rev 42:9035–9054PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    “Market study: propylene, 2nd edn, Ceresana, December 2014”. ceresana.com. Accessed 17 Nov 2019Google Scholar
  11. 11.
    Bianchini C, Giambastiani G, Luconi L, Meli A (2010) Coord Chem Rev 254:431–455CrossRefGoogle Scholar
  12. 12.
    Wang S, Sun W-H, Redshaw C (2014) J Organomet Chem 751:717–741CrossRefGoogle Scholar
  13. 13.
    Bryliakov KP, Antonov AA (2018) J Organomet Chem 867:55–61CrossRefGoogle Scholar
  14. 14.
    Wu A (1992) US Patent US5162595AGoogle Scholar
  15. 15.
    Wu A (1995) JP Patent JPH07165620Google Scholar
  16. 16.
    Yang Q, Kermagoret A, Agostinho M, Siri O, Braunstein P (2006) Organometallics 25:5518–5527CrossRefGoogle Scholar
  17. 17.
    Xu C, Shen Q, Sun X, Tang Y (2012) Chin J Chem 30:1105–1113CrossRefGoogle Scholar
  18. 18.
    Coleman ST, Sawyer GA, Bridges RS (2012) US Patent 2012095275Google Scholar
  19. 19.
    Scholz J, Hager V, Wang XJ, Kohler FTU, Stemberg M, Haumann M, Szesni N, Meyer K, Wasserscheid P (2014) ChemCatChem 6:162–169CrossRefGoogle Scholar
  20. 20.
    Kohler FTU, Gätner K, Hager V, Haumann M, Stemberg M, Wang X, Szesni N, Meyer K, Wasserscheid P (2014) Catal Sci Technol 4:936–947CrossRefGoogle Scholar
  21. 21.
    Britovsek GJP, Baugh SPD, Hoarau O, Gibson VC, Wass D, White AJP, Williams DJ (2003) Inorg Chim Acta 345:279–291CrossRefGoogle Scholar
  22. 22.
    Laine TV, Klinga M, Leskelä M (1999) Eur J Inorg Chem 1999:959–964CrossRefGoogle Scholar
  23. 23.
    Laine TV, Lappalainen K, Liimatta J, Aitola E, Löfgren B, Leskelä M (1999) Macromol Rapid Commun 20:487–491CrossRefGoogle Scholar
  24. 24.
    Laine TV, Piironen U, Lappalainen K, Klinga M, Aitola E, Leskelä M (2000) J Organomet Chem 606:112–124CrossRefGoogle Scholar
  25. 25.
    Koppl A, Alt HG (2000) J Mol Catal A 154:45–53CrossRefGoogle Scholar
  26. 26.
    Musikabhumma K, Spaniol TP, Okuda J (2003) J Polym Sci A 41:528–544CrossRefGoogle Scholar
  27. 27.
    Jie S, Zhang D, Zhang T, Sun W-H, Chen J, Ren Q, Liu D, Zheng G, Chen W (2005) J Organomet Chem 690:1739–1749CrossRefGoogle Scholar
  28. 28.
    Champouret YDM, Fawcett J, Nodes WJ, Singh K, Solan GA (2006) Inorg Chem 45:9890–9900PubMedCrossRefGoogle Scholar
  29. 29.
    Benito JM, de Jesús E, de la Mata FJ, Flores JC, Gómez R, Gómez-Sal P (2006) Organometallics 25:3876–3887CrossRefGoogle Scholar
  30. 30.
    Pelletier JDA, Fawcett J, Singh K, Solan GA (2008) J Organomet Chem 693:2723–2731CrossRefGoogle Scholar
  31. 31.
    Ahamad T, Alshehri S (2012) Polym Int 61:1640–1647CrossRefGoogle Scholar
  32. 32.
    Sun W-H, Song S, Li B, Redshaw C, Hao X, Li Y-S, Wang F (2012) Dalton Trans 41:11999–12010PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Yue E, Zhang L, Xing Q, Cao X-P, Hao X, Redshaw C, Sun W-H (2014) Dalton Trans 43:423–431PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Yue E, Xing Q, Zhang L, Shi Q, Cao X-P, Wang L, Redshaw C, Sun W-H (2014) Dalton Trans 43:3339–3346PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Martinez-Olid F, de Jesus E, Flores JC (2014) Inorg Chim Acta 409:156–162CrossRefGoogle Scholar
  36. 36.
    Chen Z, Allen KE, White PS, Daugulis O, Brookhart M (2016) Organometallics 35:1756–1760CrossRefGoogle Scholar
  37. 37.
    Guo L, Li S, Ji M, Sun W, Liu W, Li G, Zhang J, Liu Z, Dai S (2019) Organometallics 38:2800–2806CrossRefGoogle Scholar
  38. 38.
    Gibson VC, Halliwell CM, Long NJ, Oxford PJ, Smith AM, White AJP, Williams DJ (2003) Dalton Trans 5:918–926CrossRefGoogle Scholar
  39. 39.
    Tang X, Sun W-H, Gao T, Hou J, Chen J, Chen W (2005) J Organomet Chem 690:1570–1580CrossRefGoogle Scholar
  40. 40.
    Irrgang T, Keller S, Maisel H, Kretschmer W, Kempe R (2007) Eur J Inorg Chem 2007:4221–4228CrossRefGoogle Scholar
  41. 41.
    Liu H, Zhang L, Chen L, Redshaw C, Li Y, Sun W-H (2011) Dalton Trans 40:2614–2621PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Song S, Li Y, Redshaw C, Wang F, Sun W-H (2011) J Organomet Chem 696:3772–3778CrossRefGoogle Scholar
  43. 43.
    Chandran D, Lee KM, Chang HC, Song GY, Lee J-E, Suh H, Kim I (2012) J Organomet Chem 718:8–13CrossRefGoogle Scholar
  44. 44.
    Song S, Xiao T, Wang L, Redshaw C, Wang F, Sun W-H (2012) J Organomet Chem 699:18–25CrossRefGoogle Scholar
  45. 45.
    Canivet J, Aguado S, Schuurman Y, Farrusseng D (2013) J Am Chem Soc 135:4195–4198PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Wang S, Du S, Zhang W, Asuha S, Sun W-H (2015) ChemistryOpen 4:328–334PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Zhang N, Wang J, Huo H, Chen L, Shi W, Li C, Wang J (2019) Inorg Chim Acta 469:209–216CrossRefGoogle Scholar
  48. 48.
    Antonov AA, Semikolenova NV, Zakharov VA, Zhang W, Wang Y, Sun W-H, Talsi EP, Bryliakov KP (2012) Organometallics 31:1143–1149CrossRefGoogle Scholar
  49. 49.
    Antonov AA, Samsonenko DG, Talsi EP, Bryliakov KP (2013) Organometallics 32:2187–2191CrossRefGoogle Scholar
  50. 50.
    Antonov AA, Semikolenova NV, Talsi EP, Matsko MA, Zakharov VA, Bryliakov KP (2016) J Organomet Chem 822:241–249CrossRefGoogle Scholar
  51. 51.
    Antonov AA, Semikolenova NV, Talsi EP, Bryliakov KP (2019) J Organomet Chem 884:55–58CrossRefGoogle Scholar
  52. 52.
    Iovel I, Golomba L, Belyakov S, Popelis J, Gaukhman A, Lukevics E (2003) Chem Hetercycl Compd 39:318–327CrossRefGoogle Scholar
  53. 53.
    Budhai A, Omondi B, Ojwach SO, Obuah C, Osei-Twum EY, Darkwa J (2013) Catal Sci Technol 3:3130–3135CrossRefGoogle Scholar
  54. 54.
    Kumar K, Godeto T, Darkwa J (2016) J Organomet Chem 818:137–144CrossRefGoogle Scholar
  55. 55.
    Vicente I, Berardo-Gusmao K, de Souza MO, de Souza RF (2014) J Braz Chem Soc 25:2151–2156Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Boreskov Institute of CatalysisNovosibirskRussian Federation
  2. 2.Novosibirsk State UniversityNovosibirskRussian Federation

Personalised recommendations