Selective Ethylene Dimerization into 2-Butenes Using Homogeneous and Supported Nickel(II) 2-Iminopyridine Catalysts
- 47 Downloads
Abstract
In this work, we report a series of novel nickel(II) dibromide and dichloride complexes with 2-iminopyridine and 2-iminoquinoline ligands bearing electron-withdrawing substituents (F, Cl, CF3), that have demonstrated high ethylene dimerization activity [up to 19.2 × 106 g of oligomers·(mol Ni)−1 h−1] in the presence of MAO or Et2AlCl, affording predominantly a mixture of 1-butene and cis- and trans-2-butene (C4 selectivity varies from 89 to 100%; 2-butenes selectivity in the C4 fraction approaches 96%). The effects of ligand substituents and the cocatalyst nature on the activity and selectivity of the nickel(II) complexes in ethylene dimerization have been established. Several nickel complexes were supported on silica-alumina and the resulting heterogeneous catalysts were probed towards ethylene dimerization. These catalysts also afford 2-butenes, with the activity and C4 selectivity being comparable to that of homogeneous catalysts.
Graphic Abstract
Keywords
Ethylene 2-Iminopyridine Electron-withdrawing Nickel 2-Butene DimerizationNotes
Acknowledgements
This work was conducted using the equipment of the Center of Collective Use “National Center of Catalysis Research” (Project AAAA-A17-117041710085-9).
Supplementary material
References
- 1.Kotov SV, Kankaeva IN (1994) Chem Technol Fuels Oil 30:240–245CrossRefGoogle Scholar
- 2.Bender M (2014) ChemBioEng 1:136–147CrossRefGoogle Scholar
- 3.McGuinness DS (2011) Chem Rev 111:2321–2341PubMedCrossRefPubMedCentralGoogle Scholar
- 4.Forestiere A, Olivier-Bourbigou H, Saussine L (2009) Oil Gas Sci Technol 64:649–667CrossRefGoogle Scholar
- 5.Shimizu A (1981) Synth Org Chem Japan 39:554–560CrossRefGoogle Scholar
- 6.Al-Jarallah AM, Anabtawi JA, Siddiqui MAB, Aitani AM (1992) Al-Sa’doun AW. Catal Today 14:1–124CrossRefGoogle Scholar
- 7.Al-Sa’doun AW (1993) Appl Catal A 105:1–40CrossRefGoogle Scholar
- 8.Al-Sherehy FA (1996) Stud Surf Sci Catal 100:515–523CrossRefGoogle Scholar
- 9.Popoff N, Mazoyer E, Pelletier J, Gauvin RM, Taoufik M (2013) Chem Soc Rev 42:9035–9054PubMedCrossRefPubMedCentralGoogle Scholar
- 10.“Market study: propylene, 2nd edn, Ceresana, December 2014”. ceresana.com. Accessed 17 Nov 2019Google Scholar
- 11.Bianchini C, Giambastiani G, Luconi L, Meli A (2010) Coord Chem Rev 254:431–455CrossRefGoogle Scholar
- 12.Wang S, Sun W-H, Redshaw C (2014) J Organomet Chem 751:717–741CrossRefGoogle Scholar
- 13.Bryliakov KP, Antonov AA (2018) J Organomet Chem 867:55–61CrossRefGoogle Scholar
- 14.Wu A (1992) US Patent US5162595AGoogle Scholar
- 15.Wu A (1995) JP Patent JPH07165620Google Scholar
- 16.Yang Q, Kermagoret A, Agostinho M, Siri O, Braunstein P (2006) Organometallics 25:5518–5527CrossRefGoogle Scholar
- 17.Xu C, Shen Q, Sun X, Tang Y (2012) Chin J Chem 30:1105–1113CrossRefGoogle Scholar
- 18.Coleman ST, Sawyer GA, Bridges RS (2012) US Patent 2012095275Google Scholar
- 19.Scholz J, Hager V, Wang XJ, Kohler FTU, Stemberg M, Haumann M, Szesni N, Meyer K, Wasserscheid P (2014) ChemCatChem 6:162–169CrossRefGoogle Scholar
- 20.Kohler FTU, Gätner K, Hager V, Haumann M, Stemberg M, Wang X, Szesni N, Meyer K, Wasserscheid P (2014) Catal Sci Technol 4:936–947CrossRefGoogle Scholar
- 21.Britovsek GJP, Baugh SPD, Hoarau O, Gibson VC, Wass D, White AJP, Williams DJ (2003) Inorg Chim Acta 345:279–291CrossRefGoogle Scholar
- 22.Laine TV, Klinga M, Leskelä M (1999) Eur J Inorg Chem 1999:959–964CrossRefGoogle Scholar
- 23.Laine TV, Lappalainen K, Liimatta J, Aitola E, Löfgren B, Leskelä M (1999) Macromol Rapid Commun 20:487–491CrossRefGoogle Scholar
- 24.Laine TV, Piironen U, Lappalainen K, Klinga M, Aitola E, Leskelä M (2000) J Organomet Chem 606:112–124CrossRefGoogle Scholar
- 25.Koppl A, Alt HG (2000) J Mol Catal A 154:45–53CrossRefGoogle Scholar
- 26.Musikabhumma K, Spaniol TP, Okuda J (2003) J Polym Sci A 41:528–544CrossRefGoogle Scholar
- 27.Jie S, Zhang D, Zhang T, Sun W-H, Chen J, Ren Q, Liu D, Zheng G, Chen W (2005) J Organomet Chem 690:1739–1749CrossRefGoogle Scholar
- 28.Champouret YDM, Fawcett J, Nodes WJ, Singh K, Solan GA (2006) Inorg Chem 45:9890–9900PubMedCrossRefGoogle Scholar
- 29.Benito JM, de Jesús E, de la Mata FJ, Flores JC, Gómez R, Gómez-Sal P (2006) Organometallics 25:3876–3887CrossRefGoogle Scholar
- 30.Pelletier JDA, Fawcett J, Singh K, Solan GA (2008) J Organomet Chem 693:2723–2731CrossRefGoogle Scholar
- 31.Ahamad T, Alshehri S (2012) Polym Int 61:1640–1647CrossRefGoogle Scholar
- 32.Sun W-H, Song S, Li B, Redshaw C, Hao X, Li Y-S, Wang F (2012) Dalton Trans 41:11999–12010PubMedCrossRefPubMedCentralGoogle Scholar
- 33.Yue E, Zhang L, Xing Q, Cao X-P, Hao X, Redshaw C, Sun W-H (2014) Dalton Trans 43:423–431PubMedCrossRefPubMedCentralGoogle Scholar
- 34.Yue E, Xing Q, Zhang L, Shi Q, Cao X-P, Wang L, Redshaw C, Sun W-H (2014) Dalton Trans 43:3339–3346PubMedCrossRefPubMedCentralGoogle Scholar
- 35.Martinez-Olid F, de Jesus E, Flores JC (2014) Inorg Chim Acta 409:156–162CrossRefGoogle Scholar
- 36.Chen Z, Allen KE, White PS, Daugulis O, Brookhart M (2016) Organometallics 35:1756–1760CrossRefGoogle Scholar
- 37.Guo L, Li S, Ji M, Sun W, Liu W, Li G, Zhang J, Liu Z, Dai S (2019) Organometallics 38:2800–2806CrossRefGoogle Scholar
- 38.Gibson VC, Halliwell CM, Long NJ, Oxford PJ, Smith AM, White AJP, Williams DJ (2003) Dalton Trans 5:918–926CrossRefGoogle Scholar
- 39.Tang X, Sun W-H, Gao T, Hou J, Chen J, Chen W (2005) J Organomet Chem 690:1570–1580CrossRefGoogle Scholar
- 40.Irrgang T, Keller S, Maisel H, Kretschmer W, Kempe R (2007) Eur J Inorg Chem 2007:4221–4228CrossRefGoogle Scholar
- 41.Liu H, Zhang L, Chen L, Redshaw C, Li Y, Sun W-H (2011) Dalton Trans 40:2614–2621PubMedCrossRefPubMedCentralGoogle Scholar
- 42.Song S, Li Y, Redshaw C, Wang F, Sun W-H (2011) J Organomet Chem 696:3772–3778CrossRefGoogle Scholar
- 43.Chandran D, Lee KM, Chang HC, Song GY, Lee J-E, Suh H, Kim I (2012) J Organomet Chem 718:8–13CrossRefGoogle Scholar
- 44.Song S, Xiao T, Wang L, Redshaw C, Wang F, Sun W-H (2012) J Organomet Chem 699:18–25CrossRefGoogle Scholar
- 45.Canivet J, Aguado S, Schuurman Y, Farrusseng D (2013) J Am Chem Soc 135:4195–4198PubMedCrossRefPubMedCentralGoogle Scholar
- 46.Wang S, Du S, Zhang W, Asuha S, Sun W-H (2015) ChemistryOpen 4:328–334PubMedPubMedCentralCrossRefGoogle Scholar
- 47.Zhang N, Wang J, Huo H, Chen L, Shi W, Li C, Wang J (2019) Inorg Chim Acta 469:209–216CrossRefGoogle Scholar
- 48.Antonov AA, Semikolenova NV, Zakharov VA, Zhang W, Wang Y, Sun W-H, Talsi EP, Bryliakov KP (2012) Organometallics 31:1143–1149CrossRefGoogle Scholar
- 49.Antonov AA, Samsonenko DG, Talsi EP, Bryliakov KP (2013) Organometallics 32:2187–2191CrossRefGoogle Scholar
- 50.Antonov AA, Semikolenova NV, Talsi EP, Matsko MA, Zakharov VA, Bryliakov KP (2016) J Organomet Chem 822:241–249CrossRefGoogle Scholar
- 51.Antonov AA, Semikolenova NV, Talsi EP, Bryliakov KP (2019) J Organomet Chem 884:55–58CrossRefGoogle Scholar
- 52.Iovel I, Golomba L, Belyakov S, Popelis J, Gaukhman A, Lukevics E (2003) Chem Hetercycl Compd 39:318–327CrossRefGoogle Scholar
- 53.Budhai A, Omondi B, Ojwach SO, Obuah C, Osei-Twum EY, Darkwa J (2013) Catal Sci Technol 3:3130–3135CrossRefGoogle Scholar
- 54.Kumar K, Godeto T, Darkwa J (2016) J Organomet Chem 818:137–144CrossRefGoogle Scholar
- 55.Vicente I, Berardo-Gusmao K, de Souza MO, de Souza RF (2014) J Braz Chem Soc 25:2151–2156Google Scholar