Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Epitaxial Growth of Ultrathin δ-Like ΜοΝ Films on Ru(0001)

Abstract

Growth of ultrathin, single-crystalline, molybdenum-nitride films on Ru(0001) has been investigated by means of X-ray photoelectron spectroscopy (XPS), low energy electron diffraction, and helium ion scattering spectroscopy. The films were prepared in a multistep, sequential process. First, samples were exposed to saturation doses of low kinetic energy nitrogen ions. Second, the samples were exposed to varied doses of molybdenum vapor. Finally, the samples were heated in the renewed presence of low kinetic energy nitrogen ions. Through this process, an annealing temperature of 700 K was found to result in well-ordered, hexagonal films that appear to initially grow layer-by-layer, and in registry with the Ru(0001) support. XPS-characterized chemical-states and relative integrated peak intensities for Mo 3d and N 1s photoelectrons are consistent with those expected for MoN nitride formation. Films annealed above T = 700 K in UHV decompose via a presumptive N2 recombinative desorption mechanism, which leaves the film in a purely metallic Mo–Ru configuration by T = 1100 K.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Oyama ST (1996) In: Oyama ST (ed) The chemistry of transition carbides and nitrides. Blackie Academic and Professional, London

  2. 2.

    Bull CL, Kawashima T, McMillan PF, Machon D, Shebanova O, Daisenberger D, Soignard E, Takayama-Muromachi E (2006) Chapon. J Solid State Chem 179:1762–1767

  3. 3.

    Zhao E, Wang J, Wu Z (2010) Phys Status Solidi B 247:1207–1213

  4. 4.

    Ihara H, Kimura Y, Senzaki K, Zezuka H, Hirabayashi M (1985) Phys Rev B 31:3177–3178

  5. 5.

    Saito K, Asada Y (1987) J Phys F 17:2273–2283

  6. 6.

    Ganin AY, Kienle L, Vajenine GV (2006) J Solid State Chem 179:2339–2348

  7. 7.

    Luo H, Zou G, Wang H, Lee JH, Lin Y, Peng H, Lin Q, Deng S, Bauer E, McKleskey TM, Burrell AK, Jia Q (2011) J Phys Chem C 115:17880–17883

  8. 8.

    Papaconstantopoulos DA, Pickett WE, Klein BM, Boyer LL (1985) Phys Rev B 31:752–761

  9. 9.

    Gong SW, Chen HK, Li W, Li BQ (2006) Energy Fuels 20:1372–1376

  10. 10.

    Nagai M (2007) Appl Catal A 322:178–190

  11. 11.

    Dolce GM, Savage PE, Thompson LT (1997) Energy Fuels 11:668–675

  12. 12.

    Furimsky E (2003) Appl Catal A 240:1–28

  13. 13.

    Abe H, Cheung TK, Bell AT (1993) Catal Lett 21:11–18

  14. 14.

    Tominaga H, Nagai M (2010) Appl Catal A 389:195–204

  15. 15.

    Choi JG, Brenner JR, Colling CW, Demczyk BG, Dunning JL, Thompson LT (1992) Catal Today 15:201–222

  16. 16.

    Choi JG, Lee HJ, Thompson LT (1994) Appl Surf Sci 78:299–307

  17. 17.

    Colling CW, Choi JG, Thompson LT (1996) J Catal 160:35–42

  18. 18.

    Lee HJ, Choi JG, Colling CW, Mudholkar MS, Thompson LT (1995) Appl Surf Sci 89:121–130

  19. 19.

    Choi JG, Choi D, Thompson LT (1997) Appl Surf Sci 108:103–111

  20. 20.

    Choi JG, Choi D, Thompson LT (1992) J Mater Res 7:374–378

  21. 21.

    Choi JG, Curl RL, Thompson LT (1994) J Catal 146:218–227

  22. 22.

    Mudholkar MS, Thompson LT (1995) Appl Phys 77:5138–5144

  23. 23.

    Donovan EP, Hubler GK, Mudholkar MS, Thompson LT (1994) Surf Coat Technol 66:499–504

  24. 24.

    Jauberteau I, Bessaudou A, Mayet R, Cornette J, Jaubeteau JL, Carles P, Merle-Méjean T (2015) Coatings 5:656–687

  25. 25.

    Aouadi SM, Paudel Y, Luster B, Stadler S, Kohli P, Muratore C, Hager C, Voevodin AA (2008) Tribol Lett 29:95–103

  26. 26.

    Khojier K, Karami Mehr MR, Savaloni H (2013) J Nanostruct Chem 3:1–7

  27. 27.

    Kattelus H, Koskenala J, Nurmela A, Niskanen A (2002) Microelectron Eng 60:97–105

  28. 28.

    Rische D (2007) MOCVD of tungsten and molybdenum nitrides. Ph.D. Thesis, University of Bochum. Bochum, Germany

  29. 29.

    Alen P (2005) Atomic layer deposition of TaN, NbN and MoN films for Cu Metallizations. Ph.D. Thesis, University of Helsinski, Helsinski, Finland

  30. 30.

    Guntur V (2011) Molybdenum nitride films in the back contact structure of flexible substrates CdTe solar cells. Ph.D. Thesis, University of South Florida, Tampa, USA

  31. 31.

    McKay D (2008) Catalysis over molybdenum containing nitride materials. Ph.D. Thesis, University of Glasgow, Glasgow, UK

  32. 32.

    Tagliazucca V, Leoni M, Weidenthaler C (2014) Phys Chem Chem Phys 16:6182–6188

  33. 33.

    Mändl S, Manova D, Gerlach JW, Assmann W, Neumann H, Rauschenbach B (2004) Surf Coat Technol 180–181:362–366

  34. 34.

    Anitha VP, Major S, Chandrashekharam D, Bhatnagar M (1996) Surf Coat Technol 79:50–54

  35. 35.

    Hones P, Martin N, Regula M, Lévy F (2003) J Phys D 36:1023–1029

  36. 36.

    Wang Y, Lin RY (2004) Mater Sci Eng B 112:42–49

  37. 37.

    Stöber L, Konrath JP, Krivec S, Patocka F, Schwartz S, Bittner A, Schneider M, Schmid U (2015) J Micromech Microeng 25:074001–074011

  38. 38.

    Inumaru K, Baba K, Yamanaka S (2005) Chem Mater 17:5935–5940

  39. 39.

    Jauberteau I, Jauberteau JL, Goudeau P, Soulestin B, Marteau M, Cahoreau M, Aubreton J (2009) Surf Coat Technol 203:1127–1132

  40. 40.

    Linker G, Smithey R, Meyer O (1984) J Phys F 14:L115–L119

  41. 41.

    Savvides N (1987) J Appl Phys 62:600–610

  42. 42.

    Fix R, Gordon RG, Hoffman DM (1996) Thin Solid Films 288:116–119

  43. 43.

    Maoujoud M, Jardinier-Offergeld M, Bouillon F (1993) Appl Surf Sci 64:81–89

  44. 44.

    McKay D, Hargreaves JSJ, Rico JL, Rivera JL, Sun X-L (2008) J Solid State Chem 181:325–333

  45. 45.

    Cardenas-Lizana F, Gomez-Quero S, Perret N, Kiwi-Minsker L, Keane MA (2011) Catal Sci Technol 1:794–801

  46. 46.

    Perry AJ, Baouchi AW, Petersen JH, Pozder SD (1992) Surf Coat Technol 54(55):261–265

  47. 47.

    Mändl S, Gerlach JW, Assmann W, Rauschenbach B (2003) Surf Coat Technol 174–175:1238–1242

  48. 48.

    Mändl S, Gerlach W, Rauschenbach B (2005) Surf Coat Technol 200:584–588

  49. 49.

    Jauberteau I, Merle-Méjean T, Touimi S, Weber S, Bessaudou A, Passelergue A, Jauberteau JL, Aubreton J (2011) Surf Coat Technol 205:S271–S274

  50. 50.

    Jauberteau I, Jauberteau JL, Touimi S, Merle-Méjean T, Weber S, Bessaudou A (2012) Engineering 4:857–868

  51. 51.

    Jauberteau I, Mayet R, Cornette J, Bessaudou A, Carles P, Jauberteau JL, Merle-Méjean T (2015) Surf Coat Technol 270:77–85

  52. 52.

    Nagae M, Yoshio T, Takemoto Y, Takada J (2001) J Am Ceram Soc 84:1175–1177

  53. 53.

    Xie J, Li S, Zhang X, Zhang J, Wang R, Zhang H, Pan B, Xie Y (2014) Chem Sci 5:4615–4620

  54. 54.

    Freund H-J, Pacchioni G (2008) Chem Soc Rev 37:2224–2242

  55. 55.

    Sterrer M, Fischbach E, Risse T, Freund H-J (2005) Phys Rev Lett 94:186101–186104

  56. 56.

    Yang B, Kaden WE, Boscoboinik JA, Martynova Y, Lichtenstein L, Heyde M, Sterrer M, Włodarczyk R, Sierka M, Sauer J, Shaikhutdinov S, Freund HJ (2012) Phys Chem Chem Phys 14:11344–11351

  57. 57.

    Dietrich H, Jacobi K, Ertl G (1996) Coverage, lateral order, and vibrations of atomic nitrogen on Ru (0001). J Chem Phys 105(19):8944–8950

  58. 58.

    Rauscher H, Kostov KL, Menzel D (1993) Adsorption and decomposition of hydrazine on Ru (001). Chem Phys 177(2):473–496

  59. 59.

    Diekhöner L, Baurichter A, Mortensen H, Luntz AC (2000) Observation of metastable atomic nitrogen adsorbed on Ru (0001). J Chem Phys 112(5):2507–2515

  60. 60.

    Schwegmann S, Seitsonen AP, Dietrich H, Bludau H, Over H, Jacobi K, Ertl G (1997) The adsorption of atomic nitrogen on Ru (0001): geometry and energetics. Chem Phys Lett 264(6):680–686

  61. 61.

    Wallace WE (2019) Mass Spectra. In: Linstrom PJ, Mallard WG (eds) NIST chemistry WebBook, NIST standard reference database number 69. National Institute of Standards and Technology, Gaithersburg, p 20899. https://doi.org/10.18434/T4D303

  62. 62.

    Powell CJ, Jablonski A (2011) NIST electron effective-attenuation-length database—version 1.3. National Institute of Standards and Technology, Gaithersburg

  63. 63.

    Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy Perkin-Elmer corporation. Phys Electron Div, Eden Prairie

  64. 64.

    NIST X-ray photoelectron spectroscopy database, NIST standard reference database number 20 (2000) National Institute of Standards and Technology, Gaithersburg, MD https://srdata.nist.gov/xps/. Accessed 5 May 2019

  65. 65.

    Rabalais JW (2003) Principles and applications of ion scattering spectrometry: surface chemical and structural analysis. Wiley, New York

  66. 66.

    Choi JG (2011) Korean J Chem Eng 4:1133–1138

Download references

Acknowledgements

Acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund for support (or partial support) of this research.

Author information

Correspondence to William E. Kaden.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khaniya, A., Kaden, W.E. Epitaxial Growth of Ultrathin δ-Like ΜοΝ Films on Ru(0001). Top Catal 62, 1035–1043 (2019). https://doi.org/10.1007/s11244-019-01198-7

Download citation

Keywords

  • Molybdenum-nitride
  • Thin-films
  • Epitaxy
  • Catalysis
  • Hydrotreatment