Advertisement

Morphology of Palladium Thin Film Deposited on a Two-Dimensional Bilayer Aluminosilicate

  • Nusnin Akter
  • Jerzy T. Sadowski
  • Chen Zhou
  • Jian-Qiang Zhong
  • Matthijs van Spronsen
  • Yixin Xu
  • Xiao Tong
  • Taejin Kim
  • Samuel Tenney
  • Ashley R. Head
  • Dario J. Stacchiola
  • J. Anibal BoscoboinikEmail author
Original Paper
  • 51 Downloads

Abstract

The morphology of a thin palladium film deposited on bilayer Al0.35Si0.65O2/Ru(0001), previously proposed as a two-dimensional zeolite model, is investigated using a set of complementary spectroscopy and microscopy tools. Pd single atoms are known to penetrate the bilayer silica, but when a thick Pd film is deposited on the aluminosilicate case some of the metal remains on top of the bilayer oxide. Annealing this surface results in a decrease in the Pd/Si ratio seen in X-ray photoelectron spectroscopy, indicating either further permeation of Pd, or dewetting of surface Pd to form nanoparticles and leave aluminosilicate exposed. An interesting observation is that two very distinct morphologies are obtained for the film. On small narrow terraces, flat wetting films are produced, while on larger terraces Pd particles leaving a partially exposed bilayer aluminosilicate framework are obtained.

Graphic Abstract

Keywords

Thin film Surface science 2D-silica 2D-zeolite Catalysis Metal-support interaction 

Notes

Acknowledgements

This research used resources of the Center for Functional Nanomaterials and the IOS, and ESM beamlines at the National Synchrotron Light Source II, which are U.S. DOE Office of Science User Facilities, at Brookhaven National Laboratory under Contract No. DE-SC0012704. J.Q. Zhong was supported by BNL LDRD Project No. 15-010. This work was supported as part of the Integrated Mesoscale Architectures for Sustainable Catalysis (IMASC), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under award #DE-SC0012573. We thank Dr. Zhongwei Dai for useful discussions.

Supplementary material

11244_2019_1193_MOESM1_ESM.docx (643 kb)
Supplementary material 1 (DOCX 643 kb)

References

  1. 1.
    Ernst F (1995) Metal-oxide interfaces. Mater Sci Eng R 14:97–156CrossRefGoogle Scholar
  2. 2.
    Polshettiwar V, Len C, Fihri A (2009) Silica-supported palladium: sustainable catalysts for cross-coupling reactions. Coordin Chem Rev 253:2599–2626CrossRefGoogle Scholar
  3. 3.
    Petrov AW, Ferri D, Krumeich F, Nachtegaal M, van Bokhoven JA, Kröcher O (2018) Stable complete methane oxidation over palladium based zeolite catalysts. Nat Commun 9:2545CrossRefGoogle Scholar
  4. 4.
    Losch P, Huang W, Vozniuk O, Goodman ED, Schmidt W, Cargnello M (2019) Modular Pd/zeolite composites demonstrating the key role of support hydrophobic/hydrophilic character in methane catalytic combustion. ACS Catal 9:4742–4753CrossRefGoogle Scholar
  5. 5.
    Ozensoy E, Min BK, Santra AK, Goodman DW (2004) CO dissociation at elevated pressures on supported Pd nanoclusters. J Phys Chem B 108:4351–4357CrossRefGoogle Scholar
  6. 6.
    Lopez N, Illas F, Pacchioni G (1999) Adsorption of Cu, Pd, and Cs atoms on regular and defect sites of the SiO2 surface. J Am Chem Soc 121:813–821CrossRefGoogle Scholar
  7. 7.
    Löffler D, Uhlrich JJ, Baron M, Yang B, Yu X, Lichtenstein L, Heinke L, Büchner C, Heyde M, Shaikhutdinov S, Freund H-J, Wlodarczyk R, Sierka M, Sauer J (2010) Growth and structure of crystalline silica sheet on Ru(0001). Phys Rev Lett 105:146104CrossRefGoogle Scholar
  8. 8.
    Yu X, Yang B, Boscoboinik JA, Shaikhutdinov S, Freund H-J (2012) Support effects on the atomic structure of ultrathin silica films on metals. Appl Phys Lett 100:151604–151608CrossRefGoogle Scholar
  9. 9.
    Jhang J-H, Zhou C, Dagdeviren OE, Hutchings GS, Schwarz UD, Altman EI (2017) Growth of two dimensional silica and aluminosilicate bilayers on Pd(111): from incommensurate to commensurate crystalline. Phys Chem Chem Phys 19:14001–14011CrossRefGoogle Scholar
  10. 10.
    Altman EI, Götzen J, Samudrala N, Schwarz UD (2013) Growth and characterization of crystalline silica films on Pd(100). J Phys Chem C 117:26144–26155CrossRefGoogle Scholar
  11. 11.
    Boscoboinik JA, Yu X, Yang B, Fischer FD, Włodarczyk R, Sierka M, Shaikhutdinov S, Sauer J, Freund H-J (2012) Modellierung von zeolithen durch zweidimensionale Aluminosilicatfilme auf Metallunterlagen. Angew Chem 124:6107–6111CrossRefGoogle Scholar
  12. 12.
    Boscoboinik JA, Yu X, Yang B, Fischer FD, Włodarczyk R, Sierka M, Shaikhutdinov S, Sauer J, Freund H-J (2012) Modeling zeolites with metal-supported two-dimensional aluminosilicate films. Angew Chem Int Ed 51:6005–6008CrossRefGoogle Scholar
  13. 13.
    Büchner C, Lichtenstein L, Stuckenholz S, Heyde M, Ringleb F, Sterrer M, Kaden WE, Giordano L, Pacchioni G, Freund H-J (2014) Adsorption of Au and Pd on ruthenium-supported bilayer silica. J Phys Chem C 118:20959–20969CrossRefGoogle Scholar
  14. 14.
    Kaden WE, Büchner C, Lichtenstein L, Stuckenholz S, Ringleb F, Heyde M, Sterrer M, Freund H-J, Giordano L, Pacchioni G, Nelin CJ, Bagus PS (2014) Understanding surface core-level shifts using the Auger parameter: a study of Pd atoms adsorbed on ultrathin SiO2 films. Phys Rev B 89:115436CrossRefGoogle Scholar
  15. 15.
    Akter N, Wang M, Zhong J-Q, Liu Z, Kim T, Lu D, Boscoboinik JA, Stacchiola DJ (2018) Stabilization of oxidized copper nanoclusters in confined spaces. Top Catal.  https://doi.org/10.1007/s11244-017-0879-9(2018) Google Scholar
  16. 16.
    Włodarczyk R, Sierka M, Sauer J, Löffler D, Uhlrich JJ, Yu X, Yang B, Groot IMN, Shaikhutdinov S, Freund HJ (2012) Tuning the electronic structure of ultrathin crystalline silica films on Ru(0001). Phys Rev B 85:085403CrossRefGoogle Scholar
  17. 17.
    Schlexer P, Pacchioni G, Włodarczyk R, Sauer J (2016) CO adsorption on a silica bilayer supported on Ru(0001). Surf Sci 648:2–9CrossRefGoogle Scholar
  18. 18.
    Wang M, Zhong J-Q, Kestell J, Waluyo I, Stacchiola DJ, Boscoboinik JA, Lu D (2017) Energy level shifts at the silica/Ru(0001) heterojunction driven by surface and interface dipoles. Top Catal 60:481–491CrossRefGoogle Scholar
  19. 19.
    Boscoboinik JA (2019) Chemistry in confined space through the eyes of surface science—2D porous materials. J Phys: Condens Matter 31:063001Google Scholar
  20. 20.
    Klemm HW, Peschel G, Madej E, Fuhrich A, Timm M, Menzel D, Schmidt T, Freund HJ (2016) Preparation of silica films on Ru(0001): a LEEM/PEEM study. Surf Sci 643:45–51CrossRefGoogle Scholar
  21. 21.
    Klemm HW, Prieto MJ, Peschel G, Fuhrich A, Madej E, Xiong F, Menzel D, Schmidt T, Freund H-J (2018) Formation and evolution of ultrathin silica polymorphs on Ru(0001) studied with combined in situ, real-time methods. J Phys Chem C.  https://doi.org/10.1021/acs.jpcc.8b08525 Google Scholar
  22. 22.
    Lewandowski AL, Schlexer P, Tosoni S, Gura L, Marschalik P, Büchner C, Burrall H, Burson KM, Schneider W-D, Pacchioni G, Heyde M (2018) Determination of silica and germania film network structures on Ru(0001) at the atomic scale. J Phys Chem C.  https://doi.org/10.1021/acs.jpcc.8b07110 Google Scholar
  23. 23.
    Altman EI (2017) Group III phosphates as two-dimensional van der Waals materials. J Phys Chem C 121:16328–16341CrossRefGoogle Scholar
  24. 24.
    Malashevich A, Ismail-Beigi S, Altman EI (2016) Directing the structure of two-dimensional silica and silicates. J Phys Chem C 120:26770–26781CrossRefGoogle Scholar
  25. 25.
    Boscoboinik JA, Shaikhutdinov S (2014) Exploring zeolite chemistry with the tools of surface science: challenges, opportunities, and limitations. Catal Lett 144(12):1987–1995CrossRefGoogle Scholar
  26. 26.
    Wang M, Zhong J-Q, Stacchiola DJ, Boscoboinik JA, Lu D (2018) First-principles study of interface structures and charge rearrangement at the aluminosilicate/Ru(0001) heterojunction. J Phys Chem C.  https://doi.org/10.1021/acs.jpcc.8b05853 Google Scholar
  27. 27.
    Zhong J-Q, Wang M, Akter N, Kestell JD, Boscoboinik AM, Kim T, Stacchiola DJ, Lu D, Boscoboinik JA (2017) Immobilization of single argon atoms in nano-cages of two-dimensional zeolite model systems. Nat Commun 8:16118CrossRefGoogle Scholar
  28. 28.
    Zhong J-Q, Wang M, Akter N, Kestell JD, Niu T, Boscoboinik AM, Kim T, Stacchiola DJ, Wu Q, Lu D, Boscoboinik JA (2019) Ionization-facilitated formation of 2D (alumino)silicate–noble gas clathrate compounds. Adv Funct Mater.  https://doi.org/10.1002/adfm.201806583 Google Scholar
  29. 29.
    Zhong J-Q, Kestell J, Waluyo I, Wilkins S, Mazzoli C, Barbour A, Kaznatcheev K, Shete M, Tsapatsis M, Boscoboinik JA (2016) Oxidation and reduction under cover: chemistry at the confined space between ultrathin nanoporous silicates and Ru(0001). J Phys Chem C.  https://doi.org/10.1021/acs.jpcc.6b02851 Google Scholar
  30. 30.
    Kestell JD, Mudiyanselage K, Ye X, Nam C-Y, Stacchiola D, Sadowski J, Boscoboinik JA (2017) Stand-alone polarization-modulation infrared reflection absorption spectroscopy instrument optimized for the study of catalytic processes at elevated pressures. Rev Sci Instrum 88:105109CrossRefGoogle Scholar
  31. 31.
    Boscoboinik JA, Yu X, Emmez E, Yang B, Shaikhutdinov S, Fischer FD, Sauer J, Freund H-J (2013) Interaction of probe molecules with bridging hydroxyls of two-dimensional zeolites: a surface science approach. J Phys Chem C 117:13547–13556CrossRefGoogle Scholar
  32. 32.
    Yeh JJ, Lindau I (1985) Atomic subshell photoionization cross sections and asymmetry parameters: 1 ≤ Z ≤ 103. At Data Nucl Data Tables 32:1–155CrossRefGoogle Scholar
  33. 33.
    Tanuma S, Powell CJ, Penn DR (1991) Calculations of electorn inelastic mean free paths. II. Data for 27 elements over the 50–2000 eV range. Surf Interface Anal 17:911–926CrossRefGoogle Scholar
  34. 34.
    Ketteler G, Ogletree DF, Bluhm H, Liu H, Hebenstreit ELD, Salmeron M (2005) In situ spectroscopic study of the oxidation and reduction of Pd(111). J Am Chem Soc 127:18269–18273CrossRefGoogle Scholar
  35. 35.
    Pomp S, Kaden WE, Sterrer M, Freund H-J (2016) Exploring Pd adsorption, diffusion, permeation, and nucleation on bilayer SiO2/Ru as a function of hydroxylation and precursor environment: from UHV to catalyst preparation. Surf Sci 652:286–293CrossRefGoogle Scholar
  36. 36.
    Büchner C, Lichtenstein L, Yu X, Boscoboinik JA, Yang B, Kaden WE, Heyde M, Shaikhutdinov SK, Włodarczyk R, Sierka M, Sauer J, Freund H-J (2014) Ultrathin silica films the atomic structure of two-dimensional crystals and glasses. Chem Eur J 20:9176–9183CrossRefGoogle Scholar
  37. 37.
    Lichtenstein L, Büchner C, Yang B, Shaikhutdinov S, Heyde M, Sierka M, Włodarczyk R, Sauer J, Freund H-J (2012) The atomic structure of a metal-supported vitreous thin silica film. Angew Chem Int Ed 51:404–407CrossRefGoogle Scholar
  38. 38.
    Boscoboinik JA, Yu X, Shaikhutdinov S, Freund H-J (2014) Preparation of an ordered ultra-thin aluminosilicate framework composed of hexagonal prisms forming a percolated network. Microporous Mesoporous Mater 189:91–96CrossRefGoogle Scholar
  39. 39.
    Boscoboinik JA, Yu X, Yang B, Shaikhutdinov S, Freund H-J (2013) Building blocks of zeolites on an aluminosilicate ultra-thin film. Microporous Mesoporous Mater 165:158–162CrossRefGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2019

Authors and Affiliations

  • Nusnin Akter
    • 1
    • 2
  • Jerzy T. Sadowski
    • 1
  • Chen Zhou
    • 1
    • 2
  • Jian-Qiang Zhong
    • 1
  • Matthijs van Spronsen
    • 3
  • Yixin Xu
    • 1
    • 2
  • Xiao Tong
    • 1
  • Taejin Kim
    • 2
  • Samuel Tenney
    • 1
  • Ashley R. Head
    • 1
  • Dario J. Stacchiola
    • 1
  • J. Anibal Boscoboinik
    • 1
    Email author
  1. 1.Brookhaven National LaboratoryCenter for Functional NanomaterialsUptonUSA
  2. 2.Materials Science and Chemical Engineering DepartmentStony Brook UniversityStony BrookUSA
  3. 3.Department of Chemistry and Chemical BiologyHarvard UniversityCambridgeUSA

Personalised recommendations