Topics in Catalysis

, Volume 62, Issue 12–16, pp 989–1003 | Cite as

Properties of Isolated and TiO2(110) Supported Pt13 Clusters: A Theoretical Study

  • Abel S. Maldonado
  • Susana B. Ramos
  • Gabriela F. CabezaEmail author
Original Paper


Metallic subnanoparticles deposited over supports such as TiO2 play an important role for the design of model catalysts for heterogeneous catalysis applications. In this work we study the structure and energetic of Pt13 clusters deposited on TiO2(110) surfaces, using an ab initio DFT + U modeling method. We first examine the structural and dynamical stability of the isolated Pt13 nanoclusters by considering as initial configurations symmetrical Ih and Oh structures and new layered isomers. We determine their equilibrium geometries, cohesive energies, magnetic moments, electronic and vibrational density of states. The analysis of the vibrational modes reveal that the Oh and Ih structures are dynamically unstable unlike the layered structures that have lower energies. We then examine the Pt13-titania system to characterize the cluster/substrate interaction for both the stoichiometric and reduced surfaces. We characterize different aspects of the metal-oxide interaction by determining their equilibrium geometries, adsorption energies, charge transfer effects and electronic density of states. We find that the Pt13 cluster suffers a strong restructuration when adsorbed on the surface, it deforms towards increasing the interaction of the platinum atoms with the surface, leading to a high value of the adsorption energy and getting oxidized. The Pt13-rutile system is semiconductor; for the stoichiometric system a localized state in the band gap is predicted. The calculated surface oxygen vacancy formation energy is prefered by the cluster deposition as a fact that favours the use of this system in the CO oxidation reactions from a surface oxygen, an important step in the water gas shift reaction.


DFT Pt Nanoclusters Properties Catalysis 



The authors thank the financial support from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) under Project PIP 112-20110100814, Universidad Nacional del Sur (UNS) (PGI: 24/F068) and Universidad Nacional del Comahue (Project I238), Argentina.

Supplementary material

Supplementary material 1 (WMV 8333 kb)

11244_2019_1182_MOESM2_ESM.wmv (5.6 mb)
Supplementary material 2 (WMV 5778 kb)


  1. 1.
    Bagheri S, Julkapli MN, Hamid BAS (2014) Titanium dioxide as a catalyst support in heterogeneous catalysis. Sci World J. CrossRefGoogle Scholar
  2. 2.
    Sun Y-M, Belton DN, White JM (1986) Characteristics of Pt thin films on TiO2(110). J Phys Chem 90:5178–5182CrossRefGoogle Scholar
  3. 3.
    Bonanni S, Aït-Mansour K, Brune H, Harbich W (2011) Overcoming the strong metal-support interaction state: CO oxidation on TiO2(110)-supported Pt nanoclusters. ACS Catal 1:385–389CrossRefGoogle Scholar
  4. 4.
    Bonanni S, Aït-Mansour K, Harbich W, Brune H (2014) Reaction-induced cluster ripening and initial size-dependent reaction rates for CO oxidation on Ptn/TiO2(110)-(1 × 1). J Am Chem Soc 13:8702–8707CrossRefGoogle Scholar
  5. 5.
    Andreeva D, Idakiev V, Tabakova T, Ilieva L, Falaras P, Bourlinos A (2002) Low-temperature water-gas shift reaction over Au/CeO2 catalysts. Catal Today 72:51–57CrossRefGoogle Scholar
  6. 6.
    Ammal S, Heyden A (2011) Nature of Ptn/TiO2(110) (n = 1-8) interface under water-gas shift reaction conditions: a constrained ab initio thermodynamics study. J Phys Chem C 115:19246CrossRefGoogle Scholar
  7. 7.
    Ammal S, Heyden A (2013) Origin of the unique activity of Pt/TiO2 catalysts for the water–gas shift reaction. J Catal 306:78–90CrossRefGoogle Scholar
  8. 8.
    Jiang D, Overbury SH, Dai S (2012) Structures and energetics of Pt clusters on TiO2: interplay between metal-metal bonds and metal-oxygen bonds. J Phys Chem C 116:21880–21885CrossRefGoogle Scholar
  9. 9.
    Celik V, Ünal H, Mete E, Ellialtoglu S (2010) Theoretical analysis of small Pt particles on rutile TiO2(110) surfaces. Phys Rev B 82:205113CrossRefGoogle Scholar
  10. 10.
    Paz-Borbón LO, López-Martinez A, Garzón IL, Posada-Amarillas A, Grönbeck H (2017) 2D–3D structural transition in sub-nanometer Pt N clusters supported on CeO 2 (111). Phys Chem Chem Phys 19:17845–17855CrossRefGoogle Scholar
  11. 11.
    Xiao L, Wang L (2004) Structures of platinum clusters: planar or spherical? J Phys Chem A 108:8605–8614CrossRefGoogle Scholar
  12. 12.
    Wang L, Johnson DD (2007) Density functional study of structural trends for late-transition-metal 13-atom clusters. Phys Rev B 75:235405–235410CrossRefGoogle Scholar
  13. 13.
    Bhattacharyya K, Majumder Ch (2007) Growth pattern and bonding trends in Ptn (n = 2–13) clusters: theoretical investigation based on first principle calculations. Chem Phys Lett 446:374–379CrossRefGoogle Scholar
  14. 14.
    Maldonado AS, Cabeza GF, Ramos SB (2019) Dynamical stability and vibrational properties of Pt clusters. J Phys Chem Solids 131:131–138CrossRefGoogle Scholar
  15. 15.
    Sauceda HE, Pelayo JJ, Salazar F, Pérez LA, Garzón IL (2013) Vibrational spectrum, caloric curve, low-temperature heat capacity, and debye temperature of sodium clusters: the Na139 + case. J Phys Chem C 117:11393–11398CrossRefGoogle Scholar
  16. 16.
    Sauceda HE, Garzón IL (2015) Structural determination of metal nanoparticles from their vibrational (phonon) density of states. J Phys Chem C 119:10876–10880CrossRefGoogle Scholar
  17. 17.
    Schierbaum KD, Fischer S, Torquemada MC, de Segovia JL, Román E, Martin-Gago JA (1996) The interaction of Pt with TiO2(110) surfaces: a comparative XPS, UPS, ISS, and ESD study. Surf Sci 345:261–273CrossRefGoogle Scholar
  18. 18.
    Çakır C, Gülseren O (2012) Adsorption of Pt and bimetallic PtAu clusters on the partially reduced rutile (110) TiO2 surface: a first-principles study. J Phys Chem C 116:5735–5746CrossRefGoogle Scholar
  19. 19.
    Isomura N, Wu X, Watanabe Y (2009) Atomic-resolution imaging of size-selected platinum clusters on TiO2(110) surfaces. J Chem Phys 131:164707CrossRefGoogle Scholar
  20. 20.
    Watanabe Y, Wu X, Hirata H, Isomura N (2011) Size-dependent catalytic activity and geometries of size-selected Pt clusters on TiO2(110) surfaces. Catal Sci Technol 1:1490–1495CrossRefGoogle Scholar
  21. 21.
    Madsen GKH, Hammer BJ (2009) Effect of subsurface Ti-interstitials on the bonding of small gold clusters on rutile. J Chem Phys 130:044704–044707CrossRefGoogle Scholar
  22. 22.
    Chretien S, Metiu HJ (2008) O2 evolution on a clean partially reduced rutile TiO2(110) surface and on the same surface precovered with Au1 and Au2: the importance of spin conservation. J Chem Phys 129:074705–074716CrossRefGoogle Scholar
  23. 23.
    Ruiz-Martinez J, Sepulveda-Escribano A, Anderson JA, Rodriguez-Reinoso F (2009) Spectroscopic and microcalorimetric study of a TiO2-supported platinum catalyst. Phys Chem Chem Phys 11:917–920CrossRefGoogle Scholar
  24. 24.
    Maldonado AS, Morgade CIN, Ramos SB, Cabeza GF (2017) Comparative study of CO adsorption on planar and tetrahedral Pt nanoclusters supported on TiO2(110) stoichiometric and reduced surfaces. J Mol Catal A 433C:403–413CrossRefGoogle Scholar
  25. 25.
    Vilhelmsen LB, Hammer B (2014) A genetic algorithm for first principles global structure optimization of supported nano structures. J Chem Phys 141:044711CrossRefGoogle Scholar
  26. 26.
    Barcaro G, Fortunelli A (2007) Magic silver cluster on a MgO (100) terrace with defects. Phys Rev B 76:165412–165416CrossRefGoogle Scholar
  27. 27.
    Davis JBA, Horswell SL, Johnston RL (2016) Application of a parallel genetic algorithm to the global optimization of gas-phase and supported gold–iridium sub-nanoalloys. J Phys Chem 120:3759Google Scholar
  28. 28.
    Kresse G, Hafner J (1993) Ab Initio molecular dynamics for liquid metals. Phys Rev B 47:558–561CrossRefGoogle Scholar
  29. 29.
    Kresse G, Hafner J (1993) Ab Initio molecular dynamics for open-shell transition metals. Phys Rev B 48:13115–13118CrossRefGoogle Scholar
  30. 30.
    Kresse G, Hafner J (1994) Ab Initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys Rev B 49:14251–14269CrossRefGoogle Scholar
  31. 31.
    Blöchl P (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979CrossRefGoogle Scholar
  32. 32.
    Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46:6671–6687CrossRefGoogle Scholar
  33. 33.
    Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1993) Erratum: donor transition energy in GaAs superlattices in a magnetic field along the growth axis. Phys Rev B 48:4978CrossRefGoogle Scholar
  34. 34.
    Dudarev S, Botton G, Savrasov S, Humphreys C, Sutton A (1998) Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA + U study. Phys Rev B 57:1505–1509CrossRefGoogle Scholar
  35. 35.
    Anisimov VI, Zaanen J, Andersen OK (1991) Band theory and Mott insulators: hubbard U instead of Stoner I. Phys Rev B 44:943–954CrossRefGoogle Scholar
  36. 36.
    Morgade CIN (2015) Study of the properties of modified TiO2 as a support for catalytic reactions. Ph.D. Thesis, Universidad Nacional del Sur, Physics DepartmentGoogle Scholar
  37. 37.
    Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, OxfordGoogle Scholar
  38. 38.
    Huda MN, Niranjan K, Sahu BR, Kleinman L (2006) Effect of spin-orbit coupling on small platinum nanoclusters. Phys Rev A 73:053201CrossRefGoogle Scholar
  39. 39.
    Błonski P, Hafner J (2011) Magneto-structural properties and magnetic anisotropy of small transition-metal clusters: a first-principles study. J Phys: Condens Matter 23:136001–136020Google Scholar
  40. 40.
    Togo A, Tanaka I (2015) First principles phonon calculations in materials science. Scr Mater 108:1–5CrossRefGoogle Scholar
  41. 41.
    Berry H, Wang B, Zhang Q (2018) The behavior of magnetic properties in the clusters of 4d transition metals. Molecules 23:1896CrossRefGoogle Scholar
  42. 42.
    Shafai G, Ortigoza MA, Rahman TS (2012) Vibrations of Au13 and FeAu12 nanoparticles and the limits of the Debye temperature concept. J Phys: Condens Matter 24:104026–104029Google Scholar
  43. 43.
    Alcántara Ortigoza M, Heid R, Bohnen KP, Rahman TS (2014) Anomalously soft and stiff modes of transition-metal nanoparticles. J Phys Chem C 118:10335–10347CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Facultad de IngenieríaUniversidad Nacional del ComahueBuenos AiresArgentina
  2. 2.Instituto de Investigación y Desarrollo en Ingeniería de ProcesosBiotecnología y Energías Alternativas, CONICET-UNCoNeuquénArgentina
  3. 3.Grupo de Materiales y Sistemas Catalíticos, Departamento de Física, Instituto de Física del Sur (IFISUR)Universidad Nacional del Sur (UNS), CONICETBahía BlancaArgentina

Personalised recommendations