Advertisement

Ru Promoted MgO and Al-Modified MgO for Ethanol Upgrading

  • Henrique P. Pacheco
  • Eugenio F. de Souza
  • Sandra M. Landi
  • Marcus V. David
  • J. Tyler Prillaman
  • Robert J. Davis
  • Fabio S. TonioloEmail author
Original Paper
  • 26 Downloads

Abstract

Mg-containing oxides are widely studied as effective catalysts for ethanol upgrading due to their capacity to promote dehydrogenation and coupling reactions. In such systems, the dehydrogenation of ethanol to acetaldehyde is thought to be the rate-determining step, so that the addition of dehydrogenation promoters onto the oxides could be a good way of optimizing the catalysts. Herein, we propose a systematic screening of different catalysts (MgO, Ru/MgO, MgxAlOy, and Ru/MgxAlOy) in order to understand the roles of Ru and of the oxides in the several parallel reactions that occur in the systems. We investigated the catalysts by spectroscopic, textural and bench-scale techniques to correlate microscopic results with macroscopic findings. The insertion of Al into the MgO framework improved activity and product distribution towards ethene. Ru increased ethanol conversion in the systems, but directed the product distribution towards methane.

Keywords

Ethanol upgrading Magnesium oxide Ruthenium DRIFTS 

Notes

Acknowledgements

The authors thank CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for providing scholarships and supporting this work. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001. The authors thank INMETRO (Instituto Nacional de Metrologia, Qualidade e Tecnologia) and INT (Instituto Nacional de Tecnologia) respectively for the HRTEM and XPS analyses. RJD and JTP acknowledge support by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy, Grant No. DE-FG02-95ER14549.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11244_2019_1177_MOESM1_ESM.docx (394 kb)
Supplementary material 1 (DOCX 394 kb)

References

  1. 1.
    Industry Statistics – Renewable Fuel Association (2018). https://ethanolrfa.org/resources/industry/statistics
  2. 2.
    Riittonen T, Eta V, Hyvärinen S, Jönsson LJ, Mikkola JP (2013) Engineering aspects of bioethanol synthesis. In: Murzin DY (ed) Advances in chemical engineering. Academic Press, Elsevier, pp 1–73Google Scholar
  3. 3.
    Bellussi G et al (2011) Ullmann’s encyclopedia of industrial chemistry. John Wiley & Sons, New YorkGoogle Scholar
  4. 4.
    Energy Independence and Security Act of 2007 (2007). https://www.gpo.gov/fdsys/pkg/BILLS-110hr6enr/pdf/BILLS-110hr6enr.pdf
  5. 5.
    Dürre P (2007) Biobutanol: an attractive biofuel. Biotechnol J 2:1525–1534CrossRefGoogle Scholar
  6. 6.
    Rakopoulos DC, Rakopoulos CD, Papagiannakis RG, Kyritsis DC (2011) Combustion heat release analysis of ethanol or n-butanol diesel fuel blends in heavy-duty DI diesel engine. Fuel 90:1855–1867CrossRefGoogle Scholar
  7. 7.
    Uyttebroek M, Van Hecke W, Vanbroekhoven K (2013) Sustainability metrics of 1-butanol. Catal Today 239:7–10CrossRefGoogle Scholar
  8. 8.
    Energy Technology Systems Analysis Program - Ethanol Internal Combustion Engines (2010) https://tinyurl.com/yd98o2tc
  9. 9.
    Carvalho DL, De Avillez RR, Rodrigues MT, Borges LEP, Appel LG (2012) Mg and Al mixed oxides and the synthesis of n-butanol from ethanol. Appl Catal A 415:96–100CrossRefGoogle Scholar
  10. 10.
    Di Cosimo JI, Díez VK, Xu M, Iglesia E, Apesteguía CR (1998) Structure and surface and catalytic properties of Mg-Al basic oxides. J Catal 178:499–510CrossRefGoogle Scholar
  11. 11.
    Di Cosimo JI, Apesteguía CR, Ginés MJL, Iglesia E (2000) Structural requirements and reaction pathways in condensation reactions of alcohols on MgyAlOx catalysts. J Catal 190:261–275CrossRefGoogle Scholar
  12. 12.
    Ginés MJL, Iglesia E (2000) Bifunctional condensation reactions of alcohols on basic oxides modified by copper and potassium. J Catal 176:155–172CrossRefGoogle Scholar
  13. 13.
    Kozlowski JT, Davis RJ (2013) Heterogeneous catalysts for the guerbet coupling of alcohols. ACS Catal 3:1588–1600CrossRefGoogle Scholar
  14. 14.
    Riittonen T (2014) Bio-Ethanol Valorization Towards C4 s Including 1-Butanol over Metal Modified Alumina and Zeolite Catalysts. Ph.D. Thesis. Åbo Akademi UniversityGoogle Scholar
  15. 15.
    Da Ros S, Jones MD, Mattia D, Schwaab M, Noronha FB, Pinto JC (2017) Modelling the effects of reaction temperature and flow rate on the conversion of ethanol to 1,3-butadiene. Appl Catal B 530:37–47CrossRefGoogle Scholar
  16. 16.
    Birky TW, Kozlowski JT, Davis RJ (2013) Isotopic transient analysis of the ethanol coupling reaction over magnesia. J Catal 298:130–137CrossRefGoogle Scholar
  17. 17.
    Carvalho DL, Borges LEP, Appel LG, De La Piscina PR, Homs N (2013) In situ infrared spectroscopy study of the reaction pathway of the direct synthesis of n-butanol from ethanol over MgAl mixed-oxide catalysts. Catal Today 213:115–121CrossRefGoogle Scholar
  18. 18.
    Chieregato A, Ochoa JV, Bandinelli C, Fornasari G, Cavani F, Mella M (2014) On the chemistry of ethanol on basic oxides: revising mechanisms and intermediates in the lebedev and guerbet reactions. Chemsuschem 8:377–388CrossRefGoogle Scholar
  19. 19.
    Léon M, Díaz E, Vega A, Ordóñez S, Auroux A (2011) Consequences of the iron-aluminum exchange on the performance of hydrotalcite-derived mixed oxides for ethanol condensation. Appl Catal B 102:590–599CrossRefGoogle Scholar
  20. 20.
    Ramasamy KK, Grau M, Job H, Smith C, Wang Y (2016) Tunable catalytic properties of bi-functional mixed oxides in ethanol conversion to high value compounds. Catal Today 269:82–87CrossRefGoogle Scholar
  21. 21.
    Scalbert J, Thibault-Starzyk F, Jacquot R, Morvan D, Meunier F (2014) Ethanol condensation to butanol at high temperatures over a basic heterogeneous catalyst: how relevant is acetaldehyde self-aldolization? J Catal 311:28–32CrossRefGoogle Scholar
  22. 22.
    Da Ros S, Jones MD, Mattia D, Schwaab M, Barbosa-Coutinho E, Rabelo-Neto RC, Noronha FB, Pinto JC (2017) Microkinetic analysis of ethanol to 1,3-butadiene over MgO-SiO2 catalysts based on characterization of experimental fluctuations. Chem Eng J 308:988–1000CrossRefGoogle Scholar
  23. 23.
    Carlini C, Marchionna M, Noviello M, Galletti AMR, Sbrana G, Basile F, Vaccari A (2005) Guerbet condensation of methanol with n-propanol to isobutyl alcohol over heterogeneous bifunctional catalysts based on Mg–Al mixed oxides partially substituted by different metal components. J Mol Catal A 232:13–20CrossRefGoogle Scholar
  24. 24.
    Marcu I, Tanchoux N, Fajula F, Tichit D (2012) Catalytic conversion of ethanol into butanol over M-Mg-Al mixed oxide catalysts (M = Pd, Ag, Mn, Fe, Cu, Sm, Yb) obtained from LDH precursors. Catal Lett 143:23–30CrossRefGoogle Scholar
  25. 25.
    Dowson GRM, Haddow MF, Lee J, Wingad RL, Wass DF (2013) Catalytic conversion of ethanol into an advanced biofuel: unprecedented selectivity for n-Butanol. Angew Chem 52:9005–9008CrossRefGoogle Scholar
  26. 26.
    Tseng KNT, Lin S, Kampf JW, Szymczak NK (2016) Upgrading ethanol to 1-butanol with a homogeneous air-stable ruthenium catalyst. Chem Comm 14:2901–2904CrossRefGoogle Scholar
  27. 27.
    Xie Y, Ben-David Y, Shimon LJW, Milstein D (2016) Highly efficient process for production of biofuel from ethanol catalyzed by ruthenium pincer complexes. J Am Chem Soc 13:9077–9080CrossRefGoogle Scholar
  28. 28.
    Aitchison H, Wingard RL, Wass DF (2016) Homogeneous ethanol to butanol catalysis – Guerbet Renewed. ACS Catal 10:7125–7132CrossRefGoogle Scholar
  29. 29.
    Pellow KJ, Wingard RL, Wass DF (2017) Towards the upgrading of fermentation broths to advanced biofuels: a water tolerant catalyst for the conversion of ethanol to isobutanol. Catal Sci Technol 7:5128–5143CrossRefGoogle Scholar
  30. 30.
    Mazzoni R et al (2019) Catalytic biorefining of ethanol from wine waste to butanol and higher alcohols: modeling the life cycle assessment and process design. ACS Sustain Chem Eng 7:224–237CrossRefGoogle Scholar
  31. 31.
    Bond GC (1957) Platinum metals as hydrogenation catalysts. Platin Met Rev 1:87–93Google Scholar
  32. 32.
    Livingstone SE (1973) The chemistry of Ruthenium, Rhodium, Palladium, Osmium. Pergamon Press, Oxford, Iridium and PlatinumGoogle Scholar
  33. 33.
    Somorjai GA (2010) Introduction to surface chemistry and catalysis. John Wiley & Sons, New YorkGoogle Scholar
  34. 34.
    Bordawekar SV, Doskocil EJ, Davis RJ (1998) Microcalorimetric study of CO2 and NH3 on Rb- and Sr-modified catalyst supports. Langmuir 14:1734–1738CrossRefGoogle Scholar
  35. 35.
    Bordawekar SV, Davis RJ (2000) Probing the basic character of alkali-modified zeolites by CO2 adsorption microcalorimetry, butene isomerization, and toluene alkylation with ethylene. J Catal 189:79–90CrossRefGoogle Scholar
  36. 36.
    Kozlowski JT, Aronson MT, Davis RJ (2010) Transesterification of tributyrin with methanol over basic Mg: zr mixed oxide catalysts. Appl Catal B 96:508–515CrossRefGoogle Scholar
  37. 37.
    Doskocil EJ, Bordawekar SV, Davis RJ (1997) Alkali-support interactions on rubidium base catalysts determined by XANES, EXAFS, CO2 adsorption, and IR spectroscopy. J Catal 169:327–337CrossRefGoogle Scholar
  38. 38.
    Young ZD, Hanspal S, Davis RJ (2016) Aldol condensation of acetaldehyde over titania, hydroxyapatite, and magnesia. ACS Catal 6:3193–3202CrossRefGoogle Scholar
  39. 39.
    Feng M, Sánchez-Delgado RA (2014) Ruthenium nanoparticles supported on magnesium oxide: a versatile and recyclable dual-site catalyst for hydrogenation of mono- and poly-cyclic arenes, N-heteroaromatics, and S-heteroaromatics. J Catal 311:357–368CrossRefGoogle Scholar
  40. 40.
    Slater JC (1964) Atomic radii in crystals. J Chem Phys 41:3199–3204CrossRefGoogle Scholar
  41. 41.
    Taifan WE, Yan GX, Baltrusaitis J (2017) Surface chemistry of MgO/SiO2 catalyst during the ethanol catalytic conversion to 1,3-butadiene: in situ DRIFTS and DFT study. Catal Sci Technol 7:4648–4668CrossRefGoogle Scholar
  42. 42.
    Erdőheli A, Raskó J, Kecskés T, Tóth M, Dömök M, Baán K (2006) Hydrogen formation in ethanol reforming on supported noble metal catalysts. Catal Today 116:367–376CrossRefGoogle Scholar
  43. 43.
    Pacheco H, Thiengo F, Schmal M, Pinto JC (2018) A family of kinetic distributions for interpretation of experimental fluctuations in kinetic problems. Chem Eng J 332:303–311CrossRefGoogle Scholar
  44. 44.
    Alberton AL, Schwaab M, Schmal M, Pinto JC (2009) Experimental errors in kinetic tests and its influence on the precision of estimated parameters. Part I - Analysis of first-order reactions. Chem Eng J 155:816–823CrossRefGoogle Scholar
  45. 45.
    Makshina EV, Janssens W, Sels BF, Jacobs PA (2012) Catalytic study of the conversion of ethanol into 1,3-butadiene. Catal Today 198:338–344CrossRefGoogle Scholar
  46. 46.
    Matsumura Y, Hashimoto K, Yoshida S (1989) Selective dehydrogenation of ethanol over highly dehydrated silica. J Catal 117:135–143CrossRefGoogle Scholar
  47. 47.
    Sivaramakrishnan R, Su MC, Michael JV, Klippenstein SJ, Harding LB, Ruscic B (2010) Rate constants for the thermal decomposition of ethanol and its bimolecular reactions with OH and D: reflected shock tube and theoretical studies. J Phys Chem A 114:9425–9439CrossRefGoogle Scholar
  48. 48.
    Cimino S, Lisi L, Romanucci S (2018) Catalysts for conversion of ethanol to butanol: effect of acid-base and redox properties. Catal Today 304:58–63CrossRefGoogle Scholar
  49. 49.
    Idriss H (2004) Ethanol reactions over the surfaces of noble metals/cerium oxide catalysts. Platin Met Rev 48:105–115CrossRefGoogle Scholar
  50. 50.
    Ballarini A, Benito P, Fornasari G, Scelza O, Vaccari A (2013) Role of the composition and preparation method in the activity of hydrotalcite-derived Ru catalysts in the catalytic partial oxidation of methane. Int J Hydrog Energy 38:15128–15139CrossRefGoogle Scholar
  51. 51.
    Teodorescu F, Pălăduţă AM, Pavel OD (2013) Memory effect of hydrotalcites and its impact on cyanoethylation reaction. Mater Res Bull 48:2055–2059CrossRefGoogle Scholar
  52. 52.
    Palomares AE, Prato JG, Rey F, Corma A (2004) Using the “memory effect” of hydrotalcites for improving the catalytic reduction of nitrates in water. J Catal 221:62–66CrossRefGoogle Scholar
  53. 53.
    Pérez-Ramírez J, Abelló S, van der Pers NM (2007) Memory effect of activated Mg-Al hydrotalcite. In situ XRD studies during decomposition and gas-phase reconstruction. Chem Eur J 13:870–878CrossRefGoogle Scholar
  54. 54.
    Zhang B, Tang X, Li Y, Xu Y, Shen W (2007) Hydrogen production from steam reforming of ethanol and glycerol over ceria-supported metal catalysts. Int J Hydrogen Energy 32:2367–2373CrossRefGoogle Scholar
  55. 55.
    Cai W, Zhang B, Li Y, Xu Y, Shen W (2007) Hydrogen production by oxidative steam reforming of ethanol over an Ir/CeO2 catalyst. Catal Commun 8:1588–1594CrossRefGoogle Scholar
  56. 56.
    Bilal M, Jackson SD (2012) Steam reforming of ethanol at medium pressure over Ru/Al2O3: effect of temperature and catalyst deactivation. Catal Sci Technol 2:2043–2051CrossRefGoogle Scholar
  57. 57.
    Apuzzo J, Cimino S, Lisi L (2018) Ni or Ru supported on MgO/γ-Al2O3 pellets for the catalytic conversion of ethanol into butanol. RSC Adv 8:25846–25855CrossRefGoogle Scholar
  58. 58.
    Rodriguez E, Leconte M, Basset JM, Tanaka K (1989) Molecular approach to the mechanisms of C–C bond formation and cleavage on metal surfaces: hydrogenolysis, homologation, and dimerization of ethylene over Ru/SiO2 catalysts. J Catal 119:230–237CrossRefGoogle Scholar
  59. 59.
    Phung TK, Busca G (2015) Diethyl ether cracking and ethanol dehydration: acid catalysis and reaction paths. Chem Eng J 272:92–101CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chemical Engineering Program of COPPE/UFRJFederal University of Rio de JaneiroRio De JaneiroBrazil
  2. 2.National Institute of Metrology, Standardization and Industrial Quality, Inmetro/DimatXerémBrazil
  3. 3.Federal University of Rio de Janeiro, Grupo de Materiais Condutores de Energia, Centro de Tecnologia, EQ, Bl. E – 149, IFundão, Rio De JaneiroBrazil
  4. 4.Department of Chemical EngineeringUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations