Advertisement

Investigation of Iridium Nanoparticles Supported on Sub-stoichiometric Titanium Oxides as Anodic Electrocatalysts in PEM Electrolysis. Part I.: Synthesis and Characterization

  • R. Muntean
  • D. T. Pascal
  • U. RostEmail author
  • L. Holtkotte
  • J. Näther
  • F. Köster
  • M. Underberg
  • T. Hülser
  • M. Brodmann
Original Paper

Abstract

A novel route for obtaining iridium-based electrocatalysts supported on sub-stoichiometric titanium oxides for catalytic applications is presented. Chloride-free titanium oxide nanoparticles have been produced in a H2/O2-flame reactor using titanium (IV) tetraisopropoxide as precursor material. Fuel rich combustion leads to the formation of sub-stoichiometric titania (TiO2−x) with an increased number of oxygen vacancies and enhanced electrical conductivity. Subsequently, TiO2−x was dispersed in 2-propanol and spray coated on titanium substrate under argon atmosphere, forming a titania layer. This multilayered support system was decorated with iridium nanoparticles from an iridium-based electrolyte, applying an electrochemical method. This deposition technique leads to an optimized allocation of the electrocatalyst particles, adequate adhesion to the support and, furthermore, ensures the electrical conductivity from the deposited Ir particles via the TiO2−x coating towards the titanium substrate. Finally, this process generated electrochemically active electrodes for the oxygen evolution reaction (OER) in acidic environment. The mean crystallite size of the iridium catalyst was determined from the X-ray diffraction patterns according to the Debye–Scherrer equation to be 11.4 nm. Linear and cyclic voltammetry were performed in 0.5 M H2SO4 on the iridium/titania/titanium samples and proved the electrochemical activity of the prepared system. The increased catalytic activity of the prepared iridium samples was indicated by a decrease of the Tafel slope for the Ti-PTL/TiO2−x/Ir in comparison to electrochemically oxidized iridium sample. At higher overpotentials, the calculated Tafel slopes (112 mV dec−1) present greater values than commonly reported Tafel slopes for IrO2 based electrodes, revealing a different rate determining step for the OER.

Keywords

Water electrolysis Oxygen evolution reaction Electrocatalysts Iridium/iridium oxide Titanium oxide synthesis 

Notes

Acknowledgements

The present work has been carried out under the scope of the project “Entwicklung von kostengünstigen und nachhaltigen Elektrodensystemen auf Basis von optimierten Iridium/Titanoxid-Schichten für den Einsatz in der PEM-Wasserelektrolyse”. The IGF project (19817 N) of the research association (Umwelttechnik) was approved by the AiF within the framework of the program for the promotion of industrial community research and development (IGF) by the Federal Ministry of Economics and Technology Funded by the German Bundestag. Furthermore, we thank GKN Sinter Metals Filters GmbH, Germany, for manufacturing the Ti-based electrode structures, which were used as support material for our study and RUBION Center from Ruhr-University Bochum for accomplishing the XPS Analyses.

References

  1. 1.
    Wang L, Lettenmeier P et al (2016) Phys Chem Chem Phys 18:4487–4495CrossRefGoogle Scholar
  2. 2.
    Ma L, Sui S, Zhai Y (2008) J Power Sources 177:470–477CrossRefGoogle Scholar
  3. 3.
    Song Y, Yang J, Gong X (2015) Top Catal 58:675–681CrossRefGoogle Scholar
  4. 4.
    Streibel V, Hävecker M et al (2018) Top Catal 61:2064–2084CrossRefGoogle Scholar
  5. 5.
    Noack C, Burggraf F et al (2015) Studie über die Planung einer Demonstrationsanlage zur Wasserstoff-Kraftstoffgewinnung durch Elektrolyse mit Zwischenspeicherung in Salzkavernen unter Druck. Deutsches Zentrum für Luft- und Raumfahrt, StuttgartGoogle Scholar
  6. 6.
    Man S, Su H et al (2011) ChemCatChem 3:1159–1165CrossRefGoogle Scholar
  7. 7.
    Wang L, Song F et al (2017) J Mater Chem A 5:3172–3178CrossRefGoogle Scholar
  8. 8.
    Rice R, Keptner D (2004) Appl Catal 262:233–239CrossRefGoogle Scholar
  9. 9.
    Song S, Zhang H et al (2008) Hydrog Energy 33:4955–4961CrossRefGoogle Scholar
  10. 10.
    Lettenmeier P, Wang L et al (2016) Angew Chem 128:752–756CrossRefGoogle Scholar
  11. 11.
    Juodkazyte J, Sebeka B et al (2005) Electroanal 17:947–952CrossRefGoogle Scholar
  12. 12.
    Liu C, Carmo M et al (2018) Electrochem Commun 97:96–99CrossRefGoogle Scholar
  13. 13.
    Vot S, Roué L, Bélanger D (2012) Electrochim Acta 59:49–56CrossRefGoogle Scholar
  14. 14.
    Toledo-Antonio J, Angeles-Chavez C et al (2016) Top Catal 59:366–377CrossRefGoogle Scholar
  15. 15.
    Sharma S, Pollet B (2012) J Power Sources 208:96–119CrossRefGoogle Scholar
  16. 16.
    Leichtweiss T, Henning R et al (2014) J Mater Chem A 2:6631–6640CrossRefGoogle Scholar
  17. 17.
    Arif A, Balgis R et al (2017) Sci Rep 7:3646–3654CrossRefGoogle Scholar
  18. 18.
    Näther J, Köster F et al (2017) IOP Conf Ser: Mater Sci Eng 181:012041CrossRefGoogle Scholar
  19. 19.
    Antolini E (2014) ACS Catal 4:1426–1440CrossRefGoogle Scholar
  20. 20.
    Abidov A, Allabergenov B et al (2013) Int J Mater Mech Manufact 1:294–296Google Scholar
  21. 21.
    Pan X, Yang MQ et al (2013) Nanoscale 5:3601–3614CrossRefGoogle Scholar
  22. 22.
    Freakley SJ, Ruiz-Esquius J et al (2017) Surf Interface Anal 49:794–799CrossRefGoogle Scholar
  23. 23.
    Siracusano S, Baglio V et al (2017) J Power Sources 366:105–114CrossRefGoogle Scholar
  24. 24.
    Siracusano S, Baglio V et al (2009) Electrochim Acta 54:6292–6299CrossRefGoogle Scholar
  25. 25.
    Geiger S, Kasian O et al (2016) J Electrochem Soc 163:3121–3138CrossRefGoogle Scholar
  26. 26.
    Cherevko S, Geiger S et al (2016) J Electroanal Chem 773:69–78CrossRefGoogle Scholar
  27. 27.
    Burke L, Naser N, Ahern B (2007) J Solid State Electrochem 11:655–666CrossRefGoogle Scholar
  28. 28.
    Lettenmeier P, Majchel J et al (2018) Chem Sci 9:3570–3579CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Westfälische Hochschule University of Applied SciencesGelsenkirchenGermany
  2. 2.Hochschule Mittweida University of Applied SciencesMittweidaGermany
  3. 3.Institut für Energie- und Umwelttechnik e.V. (IUTA)DuisburgGermany

Personalised recommendations