Cu-Exchanged Ferrierite Zeolite for the Direct CH4 to CH3OH Conversion: Insights on Cu Speciation from X-Ray Absorption Spectroscopy

  • Dimitrios K. PappasEmail author
  • Elisa Borfecchia
  • Kirill A. Lomachenko
  • Andrea Lazzarini
  • Emil S. Gutterød
  • Michael Dyballa
  • Andrea Martini
  • Gloria Berlier
  • Silvia BordigaEmail author
  • Carlo Lamberti
  • Bjørnar Arstad
  • Unni Olsbye
  • Pablo BeatoEmail author
  • Stian Svelle
Original Paper


The direct stepwise transformation of CH4 to CH3OH over Cu-exchanged zeolites has been an intensively researched reaction as it can provide a solution for the utilization of this abundant feedstock. Up to date a commercial process is far from realization, which is why an understanding of the Cu speciation in zeolites as a function of reaction conditions as well as the development of a mechanistic view of the reaction are necessary to further advance the field. Herein we study Cu-exchanged ferrierite zeolite for the direct CH4 to CH3OH conversion by utilizing X-ray absorption spectroscopy (XAS), in order to assess the local structure and electronic properties of Cu through the reaction. A Cu-FER sample with a Cu/Al = 0.20 and Si/Al = 11 was subjected to three reaction cycles yielding ultimately 96 µmol\(_{{{\text{C}}{{\text{H}}_3}{\text{OH}}}}/{{\text{g}}_{{\text{zeolite}}}}\). Normalized to the Cu loading, this accounts for 0.33 mol\(_{{{\text{C}}{{\text{H}}_3}{\text{OH}}}}\)/molCu, making the sample comparable to very active Cu-MOR materials reported in the literature. During O2 activation, a transient self-reduction regime of CuII to CuI ions was identified; eventually leading to mostly framework interacting CuII species. CH4 loading leads to a reduction of these CuII containing species; which are finally partially reoxidized during H2O-assisted CH3OH extraction. The speciation after CH4 activation as well as H2O-assisted CH3OH extraction was assessed via linear combination fitting analysis of the XAS data.


XAS Direct CH4 to CH3OH conversion Cu-exchanged ferrierite Linear combination fitting analysis 



This publication forms a part of the iCSI (industrial Catalysis Science and Innovation) Centre for Research-based Innovation, which receives financial support from the Research Council of Norway under contract no. 237922. EB acknowledges Innovation Fund Denmark (Industrial postdoc n. 5190-00018B). CL and AM acknowledge the Mega-grant of the Russian Federation Government to support scientific research at the Southern Federal University, No. 14.Y26.31.0001. We thank W. van Beek for the competent support during XAS experiments on the BM31 beamline of the ESRF. We are grateful to K. P. Lillerud for insightful discussions.

Supplementary material

11244_2019_1160_MOESM1_ESM.docx (963 kb)
Supplementary material 1 (DOCX 963 KB)


  1. 1.
    Ravi M, Ranocchiari M, van Bokhoven JA (2017) The direct catalytic oxidation of methane to methanol—a critical assessment. Angew Chem Int Ed 56(52):16464–16483Google Scholar
  2. 2.
    Saha D, Grappe HA, Chakraborty A, Orkoulas G (2016) Postextraction separation, on-board storage, and catalytic conversion of methane in natural gas: a review. Chem Rev 116(19):11436–11499Google Scholar
  3. 3.
    Schwach P, Pan X, Bao X (2017) Direct conversion of methane to value-added chemicals over heterogeneous catalysts: challenges and prospects. Chem Rev 117(13):8497–8520Google Scholar
  4. 4.
    Wang B, Albarracín-Suazo S, Pagán-Torres Y, Nikolla E (2017) Advances in methane conversion processes. Catal Today 285:147–158Google Scholar
  5. 5.
    Groothaert MH, Smeets PJ, Sels BF, Jacobs PA, Schoonheydt RA (2005) Selective oxidation of methane by the bis(µ-oxo)dicopper core stabilized on ZSM-5 and mordenite zeolites. J Am Chem Soc 127(5):1394–1395Google Scholar
  6. 6.
    Sushkevich VL, Palagin D, Ranocchiari M, van Bokhoven JA (2017) Selective anaerobic oxidation of methane enables direct synthesis of methanol. Science 356(6337):523–527Google Scholar
  7. 7.
    Tomkins P, Mansouri A, Bozbag SE, Krumeich F, Park MB, Alayon EM, Ranocchiari M, van Bokhoven JA (2016) Isothermal cyclic conversion of methane into methanol over copper-exchanged zeolite at low temperature. Angew Chem Int Ed 55(18):5467–5471Google Scholar
  8. 8.
    Tomkins P, Ranocchiari M, van Bokhoven JA (2017) Direct conversion of methane to methanol under mild conditions over Cu-zeolites and beyond. Acc Chem Res 50(2):418–425Google Scholar
  9. 9.
    Knorpp AJ, Newton MA, Pinar AB, van Bokhoven JA (2018) Conversion of methane to methanol on copper mordenite: redox mechanism of isothermal and high-temperature-activation procedures. Ind Eng Chem Res 57(36):12036–12039Google Scholar
  10. 10.
    Sheppard T, Hamill CD, Goguet A, Rooney DW, Thompson JM (2014) A low temperature, isothermal gas-phase system for conversion of methane to methanol over Cu-ZSM-5. Chem Commun 50(75):11053–11055Google Scholar
  11. 11.
    Narsimhan K, Iyoki K, Dinh K, Roman-Leshkov Y (2016) Catalytic oxidation of methane into methanol over copper-exchanged zeolites with oxygen at low temperature. ACS Cent Sci 2(6):424–429Google Scholar
  12. 12.
    Ipek B, Lobo RF (2016) Catalytic conversion of methane to methanol on Cu-SSZ-13 using N2O as oxidant. Chem Commun 52(91):13401–13404Google Scholar
  13. 13.
    Smeets J, Groothaert PH, Schoonheydt MA R (2005) Cu based zeolites: A UV–Vis study of the active site in the selective methane oxidation at low temperatures. Catal Today 110:303–309Google Scholar
  14. 14.
    Alayon EM, Nachtegaal M, Ranocchiari M, van Bokhoven JA (2012) Catalytic conversion of methane to methanol over Cu-mordenite. Chem Commun 48(3):404–406Google Scholar
  15. 15.
    Alayon EMC, Nachtegaal M, Kleymenov E, van Bokhoven JA (2013) Determination of the electronic and geometric structure of Cu sites during methane conversion over Cu-MOR with X-ray absorption spectroscopy. Microporous Mesoporous Mater 166:131–136Google Scholar
  16. 16.
    Alayon EMC, Nachtegaal M, Bodi A, van Bokhoven JA (2014) Reaction conditions of methane-to-methanol conversion affect the structure of active copper sites. ACS Catal 4(1):16–22Google Scholar
  17. 17.
    Alayon EM, Nachtegaal M, Bodi A, Ranocchiari M, van Bokhoven JA (2015) Bis(µ-oxo) versus mono(µ-oxo)dicopper cores in a zeolite for converting methane to methanol: an in situ XAS and DFT investigation. Phys Chem Chem Phys 17(12):7681–7693Google Scholar
  18. 18.
    Grundner S, Markovits MAC, Li G, Tromp M, Pidko EA, Hensen EJM, Jentys A, Sanchez-Sanchez M, Lercher JA (2015) Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol. Nat Commun 6:7546Google Scholar
  19. 19.
    Grundner S, Luo W, Sanchez-Sanchez M, Lercher JA (2016) Synthesis of single-site copper catalysts for methane partial oxidation. Chem Commun 52(12):2553–2556Google Scholar
  20. 20.
    Vanelderen P, Snyder BE, Tsai ML, Hadt RG, Vancauwenbergh J, Coussens O, Schoonheydt RA, Sels BF, Solomon EI (2015) Spectroscopic definition of the copper active sites in mordenite: selective methane oxidation. J Am Chem Soc 137(19):6383–6392Google Scholar
  21. 21.
    Bozbag SE, Alayon EMC, Pecháček J, Nachtegaal M, Ranocchiari M, van Bokhoven JA (2016) Methane to methanol over copper mordenite: yield improvement through multiple cycles and different synthesis techniques. Catal Sci Technol 6(13):5011–5022Google Scholar
  22. 22.
    Kim Y, Kim TY, Lee H, Yi J (2017) Distinct activation of Cu-MOR for direct oxidation of methane to methanol. Chem Commun 53(29):4116–4119Google Scholar
  23. 23.
    Sushkevich VL, van Bokhoven JA (2018) Effect of Brønsted acid sites on the direct conversion of methane into methanol over copper-exchanged mordenite. Catal Sci Technol 8(16):4141–4150Google Scholar
  24. 24.
    Borfecchia E, Pappas DK, Dyballa M, Lomachenko KA, Negri C, Signorile M, Berlier G (2018) Evolution of active sites during selective oxidation of methane to methanol over Cu-CHA and Cu-MOR zeolites as monitored by operando XAS. Catal Today. Google Scholar
  25. 25.
    Newton MA, Knorpp AJ, Pinar AB, Sushkevich VL, Palagin D, van Bokhoven JA (2018) On the mechanism underlying the direct conversion of methane to methanol by copper hosted in zeolites; braiding Cu K-edge XANES and reactivity studies. J Am Chem Soc 140(32):10090–10093Google Scholar
  26. 26.
    Sushkevich VL, Palagin D, van Bokhoven JA (2018) The effect of the active-site structure on the activity of copper mordenite in the aerobic and anaerobic conversion of methane into methanol. Angew Chem Int Ed 57(29):8906–8910Google Scholar
  27. 27.
    Lomachenko KA, Martini A, Pappas DK, Negri C, Dyballa M, Berlier G, Bordiga S, Lamberti C, Olsbye U, Svelle S, Beato P, Borfecchia E (2019) The impact of reaction conditions and material composition on the stepwise methane to methanol conversion over Cu-MOR: an operando XAS study. Catal Today Google Scholar
  28. 28.
    Pappas DK, Martini A, Dyballa M, Kvande K, Teketel S, Lomachenko KA, Baran R, Glatzel P, Arstad B, Berlier G, Lamberti C, Bordiga S, Olsbye U, Svelle S, Beato P, Borfecchia E (2018) The nuclearity of the active site for methane to methanol conversion in Cu-mordenite: a quantitative assessment. J Am Chem Soc 140(45):15270–15278Google Scholar
  29. 29.
    Dyballa M, Pappas DK, Kvande K, Borfecchia E, Arstad B, Beato P, Olsbye U, Svelle S (2019) On how copper mordenite properties govern the framework stability and activity in the methane-to-methanol conversion. ACS Catal 9(1):365–375Google Scholar
  30. 30.
    Pappas DK, Borfecchia E, Dyballa M, Pankin IA, Lomachenko KA, Martini A, Signorile M, Teketel S, Arstad B, Berlier G, Lamberti C, Bordiga S, Olsbye U, Lillerud KP, Svelle S, Beato P (2017) Methane to methanol: structure-activity relationships for Cu-CHA. J Am Chem Soc 139(42):14961–14975Google Scholar
  31. 31.
    Wulfers MJ, Teketel S, Ipek B, Lobo RF (2015) Conversion of methane to methanol on copper-containing small-pore zeolites and zeotypes. Chem Commun 51(21):4447–4450Google Scholar
  32. 32.
    Ipek B, Wulfers MJ, Kim H, Göltl F, Hermans I, Smith JP, Booksh KS, Brown CM, Lobo RF (2017) Formation of [Cu2O2]2+ and [Cu2O]2+ toward C–H bond activation in Cu-SSZ-13 and Cu-SSZ-39. ACS Catal 7(7):4291–4303Google Scholar
  33. 33.
    Oord R, Schmidt JE, Weckhuysen BM (2018) Methane-to-methanol conversion over zeolite Cu-SSZ-13, and its comparison with the selective catalytic reduction of NOx with NH3. Catal Sci Technol 8(4):1028–1038Google Scholar
  34. 34.
    Park MB, Ahn SH, Mansouri A, Ranocchiari M, van Bokhoven JA (2017) Comparative study of diverse copper zeolites for the conversion of methane into methanol. ChemCatChem 9(19):3705–3713Google Scholar
  35. 35.
    Borfecchia E, Beato P, Svelle S, Olsbye U, Lamberti C, Bordiga S (2018) Cu-CHA—a model system for applied selective redox catalysis. Chem Soc Rev 47:8097–8133Google Scholar
  36. 36.
    Smeets PJ, Groothaert MH, Schoonheydt RA (2005) Cu based zeolites: A UV–Vis study of the active site in the selective methane oxidation at low temperatures. Catal Lett 110(3–4):303–309Google Scholar
  37. 37.
    Woertink JS, Smeets PJ, Groothaert MH, Vance MA, Sels BF, Schoonheydt RA, Solomon EI (2009) A [Cu2O]2+ core in Cu-ZSM-5, the active site in the oxidation of methane to methanol. Proc Natl Acad Sci USA 106(45):18908–18913Google Scholar
  38. 38.
    Beznis NV, Weckhuysen BM, Bitter JH (2010) Cu-ZSM-5 zeolites for the formation of methanol from methane and oxygen: Probing the active sites and spectator species. Catal Lett 138(1–2):14–22Google Scholar
  39. 39.
    Smeets PJ, Hadt RG, Woertink JS, Vanelderen P, Schoonheydt RA, Sels BF, Solomon EI (2010) Oxygen precursor to the reactive intermediate in methanol synthesis by Cu-ZSM-5. J Am Chem Soc 132(42):14736–14738Google Scholar
  40. 40.
    Vanelderen P, Hadt RG, Smeets PJ, Solomon EI, Schoonheydt RA, Sels BF (2011) Cu-ZSM-5: a biomimetic inorganic model for methane oxidation. J Catal 284(2):157–164Google Scholar
  41. 41.
    Markovits MAC, Jentys A, Tromp M, Sanchez-Sanchez M, Lercher JA (2016) Effect of location and distribution of Al sites in ZSM-5 on the formation of Cu-oxo clusters active for direct conversion of methane to methanol. Top Catal 59(17–18):1554–1563Google Scholar
  42. 42.
    Kulkarni AR, Zhao Z-J, Siahrostami S, Nørskov JK, Studt F (2016) Monocopper active site for partial methane oxidation in Cu-exchanged 8MR zeolites. ACS Catal 6(10):6531–6536Google Scholar
  43. 43.
    Vilella L, Studt F (2016) The stability of copper oxo species in zeolite frameworks. Eur J Inorg Chem 2016(10):1514–1520Google Scholar
  44. 44.
    Zhao Z-J, Kulkarni A, Vilella L, Nørskov JK, Studt F (2016) Theoretical insights into the selective oxidation of methane to methanol in copper-exchanged mordenite. ACS Catal 6(6):3760–3766Google Scholar
  45. 45.
    Mahyuddin MH, Staykov A, Shiota Y, Miyanishi M, Yoshizawa K (2017) Roles of zeolite confinement and Cu–O–Cu angle on the direct conversion of methane to methanol by [Cu2(µ-O)]2+-exchanged AEI, CHA, AFX, and MFI zeolites. ACS Catal 7(6):3741–3751Google Scholar
  46. 46.
    Mahyuddin MH, Tanaka T, Shiota Y, Staykov A, Yoshizawa K (2018) Methane partial oxidation over [Cu2(µ-O)]2+ and [Cu3(µ-O)3]2+ active species in large-pore zeolites. ACS Catal 8(2):1500–1509Google Scholar
  47. 47.
    Snyder BER, Vanelderen P, Schoonheydt RA, Sels BF, Solomon EI (2018) Second-sphere effects on methane hydroxylation in Cu-zeolites. J Am Chem Soc 140(29):9236–9243Google Scholar
  48. 48.
    Li G, Vassilev P, Sanchez-Sanchez M, Lercher JA, Hensen EJM, Pidko EA (2016) Stability and reactivity of copper oxo-clusters in ZSM-5 zeolite for selective methane oxidation to methanol. J Catal 338:305–312Google Scholar
  49. 49.
    Vogiatzis KD, Li G, Hensen EJM, Gagliardi L, Pidko EA (2017) Electronic structure of the [Cu3(µ-O)]2+ cluster in mordenite zeolite and its effects on the methane to methanol oxidation. J Phys Chem C 121(40):22295–22302Google Scholar
  50. 50.
    Palagin D, Knorpp AJ, Pinar AB, Ranocchiari M, van Bokhoven JA (2017) Assessing the relative stability of copper oxide clusters as active sites of a CuMOR zeolite for methane to methanol conversion: size matters? Nanoscale 9(3):1144–1153Google Scholar
  51. 51.
    Pappas DK, Borfecchia E, Dyballa M, Lomachenko KA, Martini A, Berlier G, Arstad B, Lamberti C, Bordiga S, Olsbye U, Svelle S, Beato P (2018) Understanding and optimizing the performance of Cu-FER for the direct CH4 to CH3OH conversion. ChemCatChem 11(1):621–627Google Scholar
  52. 52.
    Attfield MP, Weigel SJ, Cheetham AK (1997) On the nature of nonframework cations in a zeolitic deNOx catalyst—a synchrotron X-ray diffraction and ESR study of Cu-ferrierite. J Catal 172(2):274–280Google Scholar
  53. 53.
    Bulanek R, Wichterlova B, Sobalik Z, Tichy J (2001) Reducibility and oxidation activity of Cu ions in zeolites—effect of Cu ion coordination and zeolite framework composition. Appl Catal B 31(1):13–25Google Scholar
  54. 54.
    Nachtigall P, Davidova M, Nachtigallova D (2001) Computational study of extraframework Cu+ sites in ferrierite: structure, coordination, and photoluminescence spectra. J Phys Chem B 105(17):3510–3517Google Scholar
  55. 55.
    Bulanek R, Frolich K, Cicmanec P, Nachtigallova D, Pulido A, Nachtigall P (2011) Combined experimental and theoretical investigations of heterogeneous dual cation sites in Cu,M-FER zeolites. J Phys Chem C 115(27):13312–13321Google Scholar
  56. 56.
    Sklenak S, Andrikopoulos PC, Whittleton SR, Jirglova H, Sazama P, Benco L, Bucko T, Hafner J, Sobalik Z (2013) Effect of the Al siting on the structure of Co(II) and Cu(II) cationic sites in ferrierite. A periodic DFT molecular dynamics and FTIR study. J Phys Chem C 117(8):3958–3968Google Scholar
  57. 57.
    Bordiga S, Groppo E, Agostini G, van Bokhoven JA, Lamberti C (2013) Reactivity of surface species in heterogeneous catalysts probed by in situ X-ray absorption techniques. Chem Rev 113(3):1736–1850Google Scholar
  58. 58.
    Rehr JJ, Albers RC (2000) Theoretical approaches to X-ray absorption fine structure. Rev Mod Phys 72(3):621–654Google Scholar
  59. 59.
    Garino C, Borfecchia E, Gobetto R, van Bokhoven JA, Lamberti C (2014) Determination of the electronic and structural configuration of coordination compounds by synchrotron-radiation techniques. Coord Chem Rev 277–278:130–186Google Scholar
  60. 60.
    Van Bokhoven JA, Lamberti C (2016) X-ray absorption and X-ray emission spectroscopy: theory and applications. Wiley & Sons, Chichester (UK)Google Scholar
  61. 61.
    Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60(2):309–319Google Scholar
  62. 62.
    Abdala PM, Safonova OV, Wiker G, van Beek W, Emerich H, van Bokhoven JA, Sá J, Szlachetko J, Nachtegaal M (2012) Scientific opportunities for heterogeneous catalysis research at the SuperXAS and SNBL beam lines. CHIMIA 66(9):699–705Google Scholar
  63. 63.
    Ravel B, Newville M (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12:537–541Google Scholar
  64. 64.
    Lamberti C, Bordiga S, Bonino F, Prestipino C, Berlier G, Capello L, D’Acapito F, i Xamena FL, Zecchina A (2003) Determination of the oxidation and coordination state of copper on different Cu-based catalysts by XANES spectroscopy in situ or in operando conditions. Phys Chem Chem Phys 5(20):4502–4509Google Scholar
  65. 65.
    Le Toquin R, Paulus W, Cousson A, Prestipino C, Lamberti C (2006) Time-resolved in situ studies of oxygen intercalation into SrCoO2.5, performed by neutron diffraction and X-ray absorption spectroscopy. J Am Chem Soc 128(40):13161–13174Google Scholar
  66. 66.
    Lomachenko KA, Borfecchia E, Negri C, Berlier G, Lamberti C, Beato P, Falsig H, Bordiga S (2016) The Cu-CHA deNO­x catalyst in action: temperature-dependent NH3-assisted selective catalytic reduction monitored by operando XAS and XES. J Am Chem Soc 138(37):12025–12028Google Scholar
  67. 67.
    Martini A, Borfecchia E, Lomachenko KA, Pankin IA, Negri C, Berlier G, Beato P, Falsig H, Bordiga S, Lamberti C (2017) Composition-driven Cu-speciation and reducibility in Cu-CHA zeolite catalysts: a multivariate XAS/FTIR approach to complexity. Chem Sci 8(10):6836–6851Google Scholar
  68. 68.
    Borfecchia E, Lomachenko KA, Giordanino F, Falsig H, Beato P, Soldatov AV, Bordiga S, Lamberti C (2015) Revisiting the nature of Cu sites in the activated Cu-SSZ-13 catalyst for SCR reaction. Chem Sci 6(1):548–563Google Scholar
  69. 69.
    Giordanino F, Borfecchia E, Lomachenko KA, Lazzarini A, Agostini G, Gallo E, Soldatov AV, Beato P, Bordiga S, Lamberti C (2014) Interaction of NH3 with Cu-SSZ-13 catalyst: a complementary FTIR, XANES, and XES study. J Phys Chem Lett 5(9):1552–1559Google Scholar
  70. 70.
    Turnes Palomino G, Fisicaro P, Bordiga S, Zecchina A, Giamello E, Lamberti C (2000) Oxidation states of copper ions in ZSM-5 zeolites. A multitechnique investigation. J Phys Chem B 104(17):4064–4073Google Scholar
  71. 71.
    Llabrés i Xamena FX, Fisicaro P, Berlier G, Zecchina A, Palomino GT, Prestipino C, Bordiga S, Giamello E, Lamberti C (2003) Thermal reduction of Cu2+-mordenite and re-oxidation upon interaction with H2O, O2, and NO. J Phys Chem B 107(29):7036–7044Google Scholar
  72. 72.
    Mathon O, Beteva A, Borrel J, Bugnazet D, Gatla S, Hino R, Kantor I, Mairs T, Munoz M, Pasternak S, Perrin F, Pascarelli S (2015) The time-resolved and extreme conditions XAS (TEXAS) facility at the European synchrotron radiation facility: the general-purpose EXAFS bending-magnet beamline BM23. J Synchrotron Radiat 22(6):1548–1554Google Scholar
  73. 73.
    Bourgeat-Lami E, Massiani P, Di Renzo F, Espiau P, Fajula F, Des Courières T (1991) Study of the state of aluminium in zeolite-β. App Catal 72(1):139–152Google Scholar
  74. 74.
    Kiricsi I, Flego C, Pazzuconi G, Parker WO Jr, Millini R, Perego C, Bellussi G (1994) Progress toward understanding zeolite.beta. acidity: an IR and 27Al NMR spectroscopic study. J Phys Chem 98(17):4627–4634Google Scholar
  75. 75.
    Agostini G, Lamberti C, Palin L, Milanesio M, Danilina N, Xu B, Janousch M, van Bokhoven JA (2010) In situ XAS and XRPD parametric rietveld refinement to understand dealumination of Y zeolite catalyst. J Am Chem Soc 132(2):667–678Google Scholar
  76. 76.
    Kwak JH, Tran D, Burton SD, Szanyi J, Lee JH, Peden CHF (2012) Effects of hydrothermal aging on NH3-SCR reaction over Cu/zeolites. J Catal 287:203–209Google Scholar
  77. 77.
    Engelhard G (1991) Solid state NMR spectroscopy applied to zeolites. In: van Bekkum H, Flanigen EM, Jansen JC (eds) Studies in surface science and catalysis, vol 58. Elsevier, Amsterdam, pp 285–315Google Scholar
  78. 78.
    Müller D, Gessner W, Behrens HJ, Scheler G (1981) Determination of the aluminium coordination in aluminium-oxygen compounds by solid-state high-resolution 27AI NMR. Chem Phys Lett 79(1):59–62Google Scholar
  79. 79.
    Narsimhan K, Michaelis VK, Mathies G, Gunther WR, Griffin RG, Roman-Leshkov Y (2015) Methane to acetic acid over Cu-exchanged zeolites: mechanistic insights from a site-specific carbonylation reaction. J Am Chem Soc 137(5):1825–1832Google Scholar
  80. 80.
    Paolucci C, Parekh AA, Khurana I, Di Iorio JR, Li H, Caballero JDA, Shih AJ, Anggara T, Delgass WN, Miller JT, Ribeiro FH, Gounder R, Schneider WF (2016) Catalysis in a cage: condition-dependent speciation and dynamics of exchanged Cu cations in SSZ-13 zeolites. J Am Chem Soc 138(18):6028–6048Google Scholar
  81. 81.
    Prestipino C, Berlier G, Llabrés i Xamena FX, Spoto G, Bordiga S, Zecchina A, Turnes Palomino G, Yamamoto T, Lamberti C (2002) An in situ temperature dependent IR, EPR and high resolution XANES study on the NO/Cu+-ZSM-5 interaction. Chem Phys Lett 363(3):389–396Google Scholar
  82. 82.
    Sushkevich VL, van Bokhoven JA (2018) Revisiting copper reduction in zeolites: the impact of autoreduction and sample synthesis procedure. Chem Commun 54(54):7447–7450Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center for Materials Science and Nanotechnology (SMN), Department of ChemistryUniversity of OsloOsloNorway
  2. 2.Haldor Topsøe A/SKongens LyngbyDenmark
  3. 3.Department of Chemistry, NIS Centre and INSTM Reference CenterUniversity of TurinTurinItaly
  4. 4.European Synchrotron Radiation FacilityGrenobleFrance
  5. 5.SINTEF IndustryOsloNorway
  6. 6.Smart Materials Research InstituteSouthern Federal UniversityRostov-on-DonRussia
  7. 7.Department of Physics, INSTM Reference CenterCrisDi Interdepartmental Center, University of TurinTurinItaly

Personalised recommendations