Analysis of AdSCR Systems for NOx Removal During the Cold-Start Period of Diesel Engines

  • Federica Gramigni
  • Tommaso Selleri
  • Isabella Nova
  • Enrico TronconiEmail author
  • Simone Dieterich
  • Michel Weibel
  • Volker Schmeisser
Original Paper


Herein, we extend the study of the AdSCR system (AdSCR = adsorption + selective catalytic reduction), consisting in a physical mixture of a conventional NH3-SCR catalyst and of a NOx storage material. We have shown in previous work that an AdSCR system can capture and store NOx at room temperature from Diesel engine exhausts, and directly reduce them with ammonia at higher temperatures in the same unit. The present work aims at optimizing the system composition, in order to minimize the release of NOx in the low temperature window. Results from cold start mimicking experiments show that the full storage time, i.e. the zero-emission period where the fed NO is completely adsorbed by the catalyst, is affected only by the amount and the composition of the storage material, whereas the NOx storage efficiency is controlled by amount and nature of both components of the physical mixture.


Cold start NOx adsorption Urea-SCR Metal-promoted zeolites NOx storage efficiency 



  1. 1.
    Seykens X, Kupper F, Mentink P (2018) SAE Tech Pap 2018-01-0331Google Scholar
  2. 2.
    Sharp C, Webb CC, Yoon S, Carter M, Henry C (2017) SAE Int J Engines 10:1722–1735Google Scholar
  3. 3.
    Dahodwala M, Joshi S, Koehler EW, Franke M (2018) SAE Int J Engines 6:11Google Scholar
  4. 4.
    Körfer T (2013) SAE Tech Pap 2013-24-0163Google Scholar
  5. 5.
    Chen H-Y, Collier JE, Liu D, Mantarosie L, Durán-Martín D, Novák V, Rajaram RR, Thompsett D (2016) Catal Lett 146:1706–1711CrossRefGoogle Scholar
  6. 6.
    Vu A, Luo J, Li J, Epling WS (2017) Catal Lett 147:745–750CrossRefGoogle Scholar
  7. 7.
    Lee J, Ryou YS, Cho SJ, Lee H, Kim CH, Kim DH (2018) Appl Catal B 226:71–82CrossRefGoogle Scholar
  8. 8.
    Ji Y, Xu D, Bai S, Graham U, Crocker M, Chen B, Shi C, Harris D, Scapens D, Darab J (2017) Ind Eng Chem Res 56:111–125CrossRefGoogle Scholar
  9. 9.
    Stakheev AY, Mashkovsky IS, Bragina GO, Baeva GN, Telegina NS, Malmstrøm Larsen K, Kustov AL, Thøgersen JR (2016) Top Catal 59:931–937CrossRefGoogle Scholar
  10. 10.
    Ji Y, Bai S, Crocker M (2015) Appl Catal B 170–171:283–292CrossRefGoogle Scholar
  11. 11.
    Selleri T, Gramigni F, Nova I, Tronconi E, Dieterich S, Weibel M, Schmeisser V (2018) Catal Sci Technol 8:2467–2476CrossRefGoogle Scholar
  12. 12.
    Ruggeri MP, Selleri T, Colombo M, Nova I, Tronconi E (2015) J Catal 328:258–269CrossRefGoogle Scholar
  13. 13.
    Ruggeri MP, Selleri T, Nova I, Tronconi E, Pihl JA, Toops TJ, Partridge WP (2016) Top Catal 59:907–912CrossRefGoogle Scholar
  14. 14.
    Ruggeri MP, Selleri T, Colombo M, Nova I, Tronconi E (2014) J Catal 311:266–270CrossRefGoogle Scholar
  15. 15.
    Nova I, Ciardelli C, Tronconi E, Chatterjee D, Bandl-Konrad B (2006) Catal Today 114:3–12CrossRefGoogle Scholar
  16. 16.
    Ciardelli C, Nova I, Tronconi E, Konrad B, Chatterjee D, Ecke K, Weibel M (2004) Chem Eng Sci 59:5301–5309CrossRefGoogle Scholar
  17. 17.
    Tronconi E, Nova I, Ciardelli C, Chatterjee D, Bandl-Konrad B, Burkhardt T (2005) Catal Today 105:529–536CrossRefGoogle Scholar
  18. 18.
    Nova I, Castoldi L, Lietti L, Tronconi E, Forzatti P, Prinetto F, Ghiotti G (2004) J Catal 222:377–388CrossRefGoogle Scholar
  19. 19.
    Artioli N, Lobo RF, Iglesia E (2013) J Phys Chem C 117:20666–20674CrossRefGoogle Scholar
  20. 20.
    Schmeisser V, Weibel M, Sebastian Hernando L, Nova I, Tronconi E, Ruggeri MP (2013) SAE Int J Commer Veh 6:190–199CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dipartimento di Energia, Laboratorio di Catalisi e Processi CataliticiPolitecnico di MilanoMilanItaly
  2. 2.Daimler AGStuttgartGermany
  3. 3.Daimler AGStuttgartGermany

Personalised recommendations