Pathways for N2O Formation/Reduction During Operation of Commercial LNT Catalysts

  • R. Matarrese
  • L. CastoldiEmail author
  • S. Morandi
  • L. LiettiEmail author
Original Paper


In this study the pathways involved in N2O formation over a commercial LNT catalyst are addressed, when using H2 as a reductant. For this purpose, flow microreactor experiments coupled with FT-IR under operando conditions are used. The results indicate that N2O formation occurs both at the lean-to-rich (primary N2O) and rich-to-lean (secondary N2O) transitions. Primary N2O originates at the reduction front due to the presence of partially reduced PGM sites that do not readily dissociates NO released from the stored NOx. Undissociated NO couples with N-adatoms leading to the formation of N2O. At variance, secondary N2O originates upon oxidation with NO/O2 of reducing species left adsorbed on the catalyst surface (adsorbed CO, isocyanates and possibly NH3) during the rich phase, as pointed out by FT-IR spectroscopy. The concentration of such adsorbed species is however limited and hence the formation of secondary N2O is much smaller than that of primary N2O, when using H2 as reducing agent. The emissions of N2O reduce upon increasing the temperature, and above 250 °C N2O formation is negligible. Finally the reactivity of N2O with adsorbed NOx species (nitrites) and with the actual reductants (H2 and NH3) is also investigated, to provide further indications concerning the pathways leading to N2O emissions. It is found that N2O does not react with NOx species stored downstream the reduction front; at variance both H2 and NH3 may reduce N2O to N2 and water at rather low temperatures. The role of this reaction on N2O emission is herein discussed.


Lean NOx trap N2O formation N2O reduction Commercial LNT catalyst 



The financial support of “Fondazione Banca del Monte di Lombardia” for the FTIR cell is gratefully acknowledged.


  1. 1.
    Twigg MV (2007) Appl Catal B 70:2–15CrossRefGoogle Scholar
  2. 2.
    Kubiak L, Righini L, Castoldi L, Matarrese R, Forzatti P, Lietti L, Daturi M (2016) Top Catal 59:976–981CrossRefGoogle Scholar
  3. 3.
    Kubiak L, Matarrese R, Castoldi L, Lietti L, Daturi M, Forzatti P (2016) Catalysts 6:36:1–16Google Scholar
  4. 4.
    Castoldi L, Matarrese R, Kubiak L, Daturi M, Artioli N, Pompa S, Lietti L (2019) Catal Today 320:141–151CrossRefGoogle Scholar
  5. 5.
    Bártová Š, Kočí P, Mráček D, Marek M, Pihl JA, Choi J-S, Toops TJ, Partridge WP (2014) Catal Today 231:145–154CrossRefGoogle Scholar
  6. 6.
    Choi J-S, Partridge WP, Pihl JA, Kim M-Y, Kočí P, Daw CS (2012) Catal Today 184(1):20–26CrossRefGoogle Scholar
  7. 7.
    Kočí P, Bártová Š, Mráček D, Marek M, Choi J-S, Kim M-Y, Pihl JA, Partridge WP (2013) Top Catal 56(1):118–124CrossRefGoogle Scholar
  8. 8.
    Dasari P, Muncrief R, Harold MP (2013) Top Catal 56:1922–1936CrossRefGoogle Scholar
  9. 9.
    Castoldi L, Righini L, Matarrese R, Lietti L, Forzatti P (2015) J Catal 328:270–279CrossRefGoogle Scholar
  10. 10.
    Castoldi L, Matarrese R, Morandi S, Righini L, Lietti L (2018) Appl Catal B 224:249–263CrossRefGoogle Scholar
  11. 11.
    Morandi S, Prinetto F, Ghiotti G, Castoldi L, Lietti L, Forzatti P, Daturi M, Blasin-Aubé V (2014) Catal Today 231:116–124CrossRefGoogle Scholar
  12. 12.
    Castoldi L, Matarrese R, Morandi S, Righini L, Lietti L (2018) Appl Catal B Environ 224:249–263CrossRefGoogle Scholar
  13. 13.
    Dupré J, Bazin P, Marie O, Daturi M, Jeandel X, Meunier F (2014) Appl Catal B Environ 160–161:335–343CrossRefGoogle Scholar
  14. 14.
    Forzatti P, Lietti L, Nova I, Morandi S, Prinetto F, Ghiotti G (2010) J Catal 274:163–175CrossRefGoogle Scholar
  15. 15.
    Venkov T, Hadjiivanov K, Klissurski D (2002) Phys Chem Chem Phys 4:2443–2448CrossRefGoogle Scholar
  16. 16.
    Lietti L, Artioli N, Righini L, Castoldi L, Forzatti P (2012) Ind Eng Chem Res 51:7597–7605CrossRefGoogle Scholar
  17. 17.
    Bhatia D, Clayton RD, Harold MP, Balakotaiah V (2009) Catal Today 147:S250–S256CrossRefGoogle Scholar
  18. 18.
    Lietti L, Nova I, Forzatti P (2008) J Catal 257:270–282CrossRefGoogle Scholar
  19. 19.
    Ji Y, Toops TJ, Crocker M (2013) Appl Catal B Environ 140–141:265–275CrossRefGoogle Scholar
  20. 20.
    Jabłońska M, Palkovits R (2016) Catal Sci Technol 6:7671–7687CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Catalysis and Catalytic Processes, Dipartimento di EnergiaPolitecnico di MilanoMilanoItaly
  2. 2.Dipartimento di Chimica and NIS, Inter-departmental CenterUniversità di TorinoTorinoItaly

Personalised recommendations