BaFe1−xCuxO3 Perovskites as Soot Oxidation Catalysts for Gasoline Particulate Filters (GPF): A Preliminary Study

  • C. Moreno-Marcos
  • V. Torregrosa-Rivero
  • V. Albaladejo-Fuentes
  • M. S. Sánchez-Adsuar
  • M. J. Illán-Gómez
Original Paper


A series of BaFe1−xCuxO3 catalysts (x = 0, 0.1, 0.3 and 0.4) have been synthetized, characterized and used for soot oxidation in gasoline direct injection (GDI) exhaust conditions. The characterization of the catalysts (by BET, ICP-OES, XRD, XPS, H2-TPR and O2-TPD) reveals that copper is incorporated into the perovskite lattice leading to: (i) the distortion of the original hexagonal perovskite structure for the lowest copper content catalyst (BFC1) and the modification of the structure, from hexagonal to cubic, for the catalysts with higher copper content (BFC3 and BFC4), (ii) the generation of a BaOx–CuOx oxide as minority segregated phase for BFC4 catalyst, (iii) the increase in the amount of oxygen surface vacancies for BFC3 and BFC4 catalysts, and (iv) the decrease in the total amount of O2 released during O2-TPD experiments. All the BaFe1−xCuxO3 perovskites are active for soot oxidation under the highest demanding GDI exhaust conditions (regular stoichiometric GDI operation, i.e., 0% O2). The catalyst with the highest copper content (BFC4) shows the highest soot conversion, related to its largest amount of β-oxygen evolved, and, to the presence of a high amount of copper species (as BaOx–CuOx oxide) on its surface.


Fe-based perovskite Gasoline direct injection (GDI) exhaust Soot oxidation catalysts Gasoline particulate filter (GPF) 



The authors thank Generalitat Valenciana (PROMETEO/2018/076), Spanish Government (MINECO Project CTQ2015-64801-R) and UE (FEDER Founding) for the financial support. V. Torregrosa- Rivero thanks the Generalitat Valenciana for her Ph.D. Grant (ACIF 2017/221).

Supplementary material

11244_2018_1126_MOESM1_ESM.docx (768 kb)
Supplementary material 1 (DOCX 768 KB)


  1. 1.
    Johnson TV (2014) SAE Tech Pap, 2014-01-1491Google Scholar
  2. 2.
    Mamakos A, Steininger N, Martini G, Dilara P, Drossinos Y (2013) Atmos Environ 77:16–23CrossRefGoogle Scholar
  3. 3.
    Guan B, Zhan R, Lin H, Huang Z (2015) J Environ Manag 154:225–248CrossRefGoogle Scholar
  4. 4.
    Johnson TV (2012) SAE Tech Pap, 2012-01-0368Google Scholar
  5. 5.
    Kim CH, Schmid M, Schmieg SJ, Tan JL, Li W (2011) SAE Tech Pap 2011:-01-1134Google Scholar
  6. 6.
    Boger T, Rose D, Nicolin P, Gunasekaran N, Glasson Emiss T (2015) Control Sci Technol 1:49–63CrossRefGoogle Scholar
  7. 7.
    Hernández WY, Tsampas MN, Zhao C, Bosselet A, Vernoux P (2015) Catal Today 258:525–534CrossRefGoogle Scholar
  8. 8.
    Hernández WY, López-González D, Ntais S, Zhao C, Boréave A, Vernoux P (2018) Appl Catal B 226:202–212CrossRefGoogle Scholar
  9. 9.
    Giménez- Mañogil J, Quiles-Díaz S, Guillén-Hurtado N, García-García A (2007) Top Catal 60:2–12CrossRefGoogle Scholar
  10. 10.
    Peña MA, Fierro JLG (2001) Chem Rev 101:1981–2018CrossRefGoogle Scholar
  11. 11.
    Ura B, Trawczynski J, Kotarba A, Bieniasz W, Illán-Gómez MJ, Bueno-López A, López-Suárez FE (2011) Appl Catal B 101:169–175CrossRefGoogle Scholar
  12. 12.
    Mgarajuan SK, Rayalu S, Nishibori M, Teraoka Y, Labhsetwa N (2015) ACS Catal 5:301–309CrossRefGoogle Scholar
  13. 13.
    Torregrosa-Rivero V, Albaladejo-Fuentes V, Sánchez-Adsuar MS, Illán-Gómez MJ (2017) RSC Adv 7:35228–35238CrossRefGoogle Scholar
  14. 14.
    Albaladejo-Fuentes V, López-Suárez FE, Sánchez-Adsuar MS, Illán-Gómez MJ (2016) Appl Catal A 519:7–15CrossRefGoogle Scholar
  15. 15.
    López-Suárez FE, Parres-Esclapez S, Bueno-López A, Illán-Gómez MJ, Ura B, Trawczynski J (2009) Appl Catal B 93:82–89CrossRefGoogle Scholar
  16. 16.
    López-Suárez FE, Bueno-López A, Illán-Gómez MJ, Trawczynski J (2014) Appl Catal A 485:214–221CrossRefGoogle Scholar
  17. 17.
    Albaladejo-Fuentes V, López-Suárez FE, Sánchez-Adsuar MS, Illán-Gómez MJ (2014) Appl Catal A 488:189–199CrossRefGoogle Scholar
  18. 18.
    Huang C, Zhu Y, Wang X, Liu X, Wang J, Zhang T (2017) J Catal 347:9–20CrossRefGoogle Scholar
  19. 19.
    Chen X, Huang L, Wei Y, Wang H (2011) J Membr Sci 368:159–164CrossRefGoogle Scholar
  20. 20.
    Ghijsen J, Tjeng LH, van Elp J, Eskes H, Wesrterink J, Sawatzy GA, Czyzyk MT (1988) Phys Rev B 38:11322–11330CrossRefGoogle Scholar
  21. 21.
    Wu Y, Cordier C, Berrier E, Nuns N, Dujardin C, P. Granger (2013) Appl Catal B 140–141:151–163CrossRefGoogle Scholar
  22. 22.
    Benoit R (2013) Centre de Recherche sur la Matière Divisée—CNRS.
  23. 23.
    Cadus L, Merino N, Barbero B, Eloy P (2006) Appl Surf Sci 253:1489–1493CrossRefGoogle Scholar
  24. 24.
    Xian H, Zhang X, Li X, Li L, Zou H, Meng M, Li Q, Tan Y, Tsubak N (2019) J Phys Chem C 114:11844–11852CrossRefGoogle Scholar
  25. 25.
    Merino NA, Barbero BP, Grange P, Cadús LE (2005) J Catal 231:232–244CrossRefGoogle Scholar
  26. 26.
    Onrubia JA, Pereda-Ayo B, De-La-Torre U, González-Velasco JR (2017) Appl Catal B 213:198–210CrossRefGoogle Scholar
  27. 27.
    Liang Q, Wu X, Weng D, Lu Z (2008) Catal Commun 9:202–206CrossRefGoogle Scholar
  28. 28.
    López-Suárez FE, Bueno-López A, Illán-Gómez MJ (2008) Appl Catal B 84:651–658CrossRefGoogle Scholar
  29. 29.
    Wang Y, Wang J, Chen H, Yao M, Li Y (2015) Chem Eng Sci 135:294–300CrossRefGoogle Scholar
  30. 30.
    Andana T. Piumetti M, Bensaid S, Veyre L, Thieuleux c, Russo N, Fino D, Quaderlli EA, Pirone R (2017) Appl Catal B 216:41–58CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Química Inorgánica, Facultad de CienciasUniversidad de AlicanteAlicanteSpain

Personalised recommendations