Kinetic Modeling of the Metal/Support Interaction for CH4 Reaction over Oxidized Pd/Al2O3

  • F. Dhainaut
  • P. Granger
Original Paper


This paper deals with the kinetics of CH4 dissociation on model Pd/Al2O3 catalysts. The adsorption and conversion of CH4 over oxidized catalysts, fresh or aged, were studied with a temporal analysis of products (TAP) reactor. Single CH4 pulse TAP experiments were performed on a stabilized surface. The experiments are discussed in the light of a selected mechanism involving CH4 decomposition into CO2 taking into account an interaction between the metallic active sites and the support. TAP experiments over the oxidized catalysts confirm the involvement of the metal/support interface, with a spill-over effect. Optimized kinetics parameters validate this interaction of OH species adsorbed on Pd sites with alumina, showing a relatively good agreement between experimental and calculated outlet gas composition. Both fresh and aged catalysts follow the chosen mechanism with the same kinetic constants at 400 °C only an alteration of the catalytic surface areas explain the loss of activity.


TAP measurements Methane activation Palladium NGV catalysts Kinetic modelling 



Chevreul institute (FR 2638), Ministère de l’Enseignement Supérieur et de la Recherche, Région Nord – Pas de Calais and FEDER are acknowledged for supporting and funding this work.


  1. 1.
    EU Project - BRPR960213 (1999) Use of natural gas in passenger cars - components for bifuel vehicles and concepts to handle varying gas compositionsGoogle Scholar
  2. 2.
    Klingstedt F, Neyestanaki AK, Byggningsbacka R, Lindfors LE, Lundén M, Petersson M, Tengström P, Ollonqvist T, Väyrynen J (2001) Appl Catal A 209:301–316CrossRefGoogle Scholar
  3. 3.
    Farrauto RJ, Hobson MC, Kennelly T, Waterman EM (1992) Appl Catal A 81:227–237CrossRefGoogle Scholar
  4. 4.
    Renème Y, Dhainaut F, Granger P (2009) Top Catal 52:2007–2012CrossRefGoogle Scholar
  5. 5.
    Dhainaut F, Van Veen AC, Pietrzyk S, Granger P (2017) Top Catal 60:295–299CrossRefGoogle Scholar
  6. 6.
    Dhainaut F, Reneme Y, Pietrzik S, Schuurman Y, Mirodatos C, Granger P (2013) Top Catal 56:279–286CrossRefGoogle Scholar
  7. 7.
    Renème Y, Dhainaut F, Frère M, Gengembre L, Granger P, Dujardin C, De Cola P (2010) Surf Interface Anal 42:530–535CrossRefGoogle Scholar
  8. 8.
    Renème Y, Dhainaut F, Pietrzyk S, Chaar M, Van Veen AC, Granger P (2012) Appl Catal B 126:239–248CrossRefGoogle Scholar
  9. 9.
    Peri JB (1965) J Phys Chem 69:211–219CrossRefGoogle Scholar
  10. 10.
    De Boer JH, Fortuin JMH, Lippens BC, Meijs WH (1963) J Catal 2:1–7CrossRefGoogle Scholar
  11. 11.
    Renème Y, Dhainaut F, Schuurman Y, Mirodatos C, Granger P (2014) Appl Catal B 160–161:390–399CrossRefGoogle Scholar
  12. 12.
    Van den Bossche M, Grönbeck H (2015) J Am Chem Soc 137:12035–12044CrossRefGoogle Scholar
  13. 13.
    Shustorovich E, Sellers H (1998) Surf Sci Rep 31:1–119CrossRefGoogle Scholar
  14. 14.
    Granger P, Renème Y, Dhainaut F, Schuurman Y, Mirodatos C (2017) Top Catal 60:289–294CrossRefGoogle Scholar
  15. 15.
    Zamora M, Cordoba A (1978) J Phys Chem 82:584–588CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Univ. Lille, CNRS, ENSCL UMR 8181 -UCCS -Unité de Catalyse et Chimie du SolideLilleFrance

Personalised recommendations