Advertisement

Topics in Catalysis

, Volume 62, Issue 1–4, pp 164–171 | Cite as

Regeneration of Sulfur Poisoned Pd–Pt/CeO2–ZrO2–Y2O3–La2O3 and Pd–Pt/Al2O3 Methane Oxidation Catalysts

  • Patrick Lott
  • Mario Eck
  • Dmitry E. Doronkin
  • Radian Popescu
  • Maria Casapu
  • Jan-Dierk GrunwaldtEmail author
  • Olaf DeutschmannEmail author
Original Paper

Abstract

The poisoning of Pd–Pt/Al2O3 and Pd–Pt/CeO2–ZrO2–Y2O3–La2O3 methane oxidation catalysts by SO2 was studied under conditions typical for lean burn gas engines. Regeneration of sulfur-poisoned catalysts was achieved by applying rich conditions at 500 and 550 °C. The presence of NOx resulted in a slower deactivation rate. While Pd–Pt/CeO2–ZrO2–Y2O3–La2O3 showed a superior catalytic activity, durability and regeneration ability compared to Pd–Pt/Al2O3 under NOx-free reaction conditions, its reactivation by a rich treatment was strongly inhibited if NOx was present during the aging and regeneration process. Operando X-ray absorption spectroscopy (XAS) was used to monitor the evolution of Pd and Pt during poisoning and regeneration. The studies show the formation of PdS and metallic Pd during reactivation of Pd–Pt/Al2O3, followed by transition to PdO after changing to lean reaction gas mixture. On the other hand, Pd species supported on CeO2–ZrO2–Y2O3–La2O3 could not be reduced under rich conditions and no regeneration occurred.

Keywords

Methane oxidation Emission control Sulfur poisoning Pd–Pt catalyst Catalyst deactivation Operando spectroscopy 

Notes

Acknowledgements

We acknowledge SOLEIL for provision of synchrotron radiation facilities and we would like to thank S. Belin and V. Briois for assistance in using beamline ROCK. This work was supported by a public grant overseen by the French National Research Agency (ANR) as part of the “Investissements d’Avenir” program (reference ANR-EQPX-45). The authors thank the DFG (High-Output Catalyst Development Platform, INST 121384/16 − 1). Dr. G. Cavusoglu is acknowledged for the support during the XAS-experiments, A. Deutsch is acknowledged for the BET-measurements and maintenance of the High-Output Catalyst Development Platform. P. Lott gratefully thanks the “Fonds der Chemischen Industrie” (FCI) for financial support.

Supplementary material

11244_2018_1121_MOESM1_ESM.pdf (861 kb)
Supplementary material 1 (PDF 861 KB)

References

  1. 1.
    Gelin P, Primet M (2002) Appl Catal B 39:1–37CrossRefGoogle Scholar
  2. 2.
    Deutschmann O, Grunwaldt J-D (2013) Chem Ing Tech 85:595–617CrossRefGoogle Scholar
  3. 3.
    Lapisardi G, Urfels L, Gelin P, Primet M, Kaddouri A, Garbowski E, Toppi S, Tena E (2006) Catal Today 117:564–568CrossRefGoogle Scholar
  4. 4.
    Ciuparu D, Pfefferle L (2001) Appl Catal A 209:415–428CrossRefGoogle Scholar
  5. 5.
    Lampert JK, Kazi MS, Farrauto RJ, SAE Tech Pap 961971 (1996)Google Scholar
  6. 6.
    Wilburn MS, Epling WS (2017) Appl Catal B 206:589–598CrossRefGoogle Scholar
  7. 7.
    Mowery DL, Graboski MS, Ohno TR, McCormick RL (1999) Appl Catal B 21:157–169CrossRefGoogle Scholar
  8. 8.
    Hamzehlouyan T, Sampara CS, Li JH, Kumar A, Epling WS (2016) Appl Catal B 181:587–598CrossRefGoogle Scholar
  9. 9.
    Narui K, Yata H, Furuta K, Nishida A, Kohtoku Y, Matsuzaki T (1999) Appl Catal A 179:165–173CrossRefGoogle Scholar
  10. 10.
    Arosio F, Colussi S, Groppi G, Trovarelli A (2006) Catal Today 117:569–576CrossRefGoogle Scholar
  11. 11.
    Honkanen M, Wang J, Kärkkäinen M, Huuhtanen M, Jiang H, Kallinen K, Keiski RL, Akola J, Minnamari V (2018) J Catal 358:253–256CrossRefGoogle Scholar
  12. 12.
    Gremminger A, Lott P, Merts M, Casapu M, Grunwaldt J-D, Deutschmann O (2017) Appl Catal B 218:833–843CrossRefGoogle Scholar
  13. 13.
    Kleist W, Grunwaldt J-D (2014) High output catalyst development in heterogeneous gas phase catalysis. In: Hagemeyer A, Volpe AF (eds) Modern applications of high throughput R&D in heterogeneous catalysis. Bentham Science Publishers, Sharjah, pp 357–371CrossRefGoogle Scholar
  14. 14.
    Grunwaldt J-D, van Vegten N, Baiker A, Chem Commun (2007) 4635–4637Google Scholar
  15. 15.
    Ravel B, Newville M (2005) J Synchrotron Radiat 12:537–541CrossRefGoogle Scholar
  16. 16.
    Benfatto M, Meneghini C (2015) A close look into the low energy region of the XAS spectra: the XANES region. In: Mobilio S, Boscherini F, Meneghini C (eds) Synchrotron radiation. Springer, Berlin, pp 213–240Google Scholar
  17. 17.
    Kelly SD, Kemner KM, Fein JB, Fowle DA, Boyanov MI, Bunker BA, Yee N (2002) Geochim Cosmochim Acta 66:3855–3871CrossRefGoogle Scholar
  18. 18.
    Gänzler AM, Casapu M, Vernoux P, Loridant S, Aires FJCS, Epicier T, Betz B, Hoyer R, Grunwaldt J-D (2017) Angew Chem Int Ed 56:13078–13082CrossRefGoogle Scholar
  19. 19.
    Jones J, Xiong HF, Delariva AT, Peterson EJ, Pham H, Challa SR, Qi GS, Oh S, Wiebenga MH, Hernandez XIP, Wang Y, Datye AK (2016) Science 353:150–154CrossRefGoogle Scholar
  20. 20.
    Hamzehlouyan T, Sampara C, Li JN, Kumar A, Epling W (2016) Top Catal 59:1028–1032CrossRefGoogle Scholar
  21. 21.
    Lampert JK, Kazi MS, Farrauto RJ (1997) Appl Catal B 14:211–223CrossRefGoogle Scholar
  22. 22.
    Colussi S, Arosio F, Montanari T, Busca G, Groppi G, Trovarelli A (2010) Catal Today 155:59–65CrossRefGoogle Scholar
  23. 23.
    Luo T, Gorte RJ (2004) Appl Catal B 53:77–85CrossRefGoogle Scholar
  24. 24.
    Kwon DW, Nam KB, Hong SC (2015) Appl Catal B 166:37–44CrossRefGoogle Scholar
  25. 25.
    Truex TJ (1999) SAE Technical Paper 961971Google Scholar
  26. 26.
    Luo T, Vohs JM, Gorte RJ (2002) J Catal 210:397–404CrossRefGoogle Scholar
  27. 27.
    Bazin P, Saur O, Lavalley JC, Le Govic AM, Blanchard G (1998) Stud Surf Sci Catal 116:571–579CrossRefGoogle Scholar
  28. 28.
    Sadokhina N, Smedler G, Nylen U, Olofsson M, Olsson L (2018) Appl Catal B 236:384–395CrossRefGoogle Scholar
  29. 29.
    Gremminger AT, de Carvalho HWP, Popescu R, Grunwaldt J-D, Deutschmann O (2015) Catal Today 258:470–480CrossRefGoogle Scholar
  30. 30.
    Sadokhina N, Smedler G, Nylen U, Olofsson M, Olsson L (2017) Appl Catal B 200:351–360CrossRefGoogle Scholar
  31. 31.
    Jones JM, Dupont VA, Brydson R, Fullerton DJ, Nasri NS, Ross AB, Westwood AVK (2003) Catal Today 81:589–601CrossRefGoogle Scholar
  32. 32.
    Auvray X, Pingel T, Olsson E, Olsson L (2013) Appl Catal B 129:517–527CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Patrick Lott
    • 1
  • Mario Eck
    • 1
  • Dmitry E. Doronkin
    • 1
  • Radian Popescu
    • 2
  • Maria Casapu
    • 1
  • Jan-Dierk Grunwaldt
    • 1
    Email author
  • Olaf Deutschmann
    • 1
    Email author
  1. 1.Institute for Chemical Technology and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.Laboratory for Electron Microscopy (LEM)Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations